企业应用大模型报告:如何应对变革,构建专属“我的AI”

摘要:

大模型应用已成为企业智能化升级关键,但企业应用大模型面临组织惯性、业务契合、技术应用、模型定制、硬件选型等痛点。企业决策者需要直面挑战、高瞻远瞩,构建真正契合企业自身需求的专属 AI 能力 ,从组织文化革新、人才队伍建设、业务与产品升级、技术底座构建、实施规划五维度着手,构建 “人才 - 技术 - 业务” 三位一体的进化飞轮,以 AI 助力企业持续革新。

一、行业变革下企业应用大模型趋势和现状

1)企业应用大模型趋势

今年以来DeepSeek凭借其技术通用性、成本效益及开源生态优势,大大加速了产业智能化进程。一系列行业变革正在发生,企业利用AI创造价值的竞赛才刚刚拉开序幕。Gartner《2025年及未来中国企业实现人工智能(AI)价值的重要预测》报告中,分析师提出了以下四大战略预测:

  • 到 2027 年,中国 80% 的企业将使用多模型生成式人工智能策略来实现多样化的模型功能、满足本地部署要求并获得成本效益。
  • 到 2027 年,中国采用复合型 AI 的企业将比只依赖生成式人工智能模型的企业领先两年实现 AI 落地。
  • 到 2028 年,中国企业对人工智能就绪型数据(特别是非结构化数据)的投资将达到 2024 年的 20 倍。
  • 到 2029 年,中国 60% 的企业将把 AI 融入其主要产品和服务中,并且这些 AI 功能将成为收入增长的主要驱动力。

从技术维度,企业应用大模型表现包括以下五个方面的趋势:

  • 大模型应用普及化

2025年大模型将实现大规模商业化应用,越来越多企业将接入大模型并将其深度融入企业经营环节。大模型的应用将从单一的文本生成扩展到多模态、智能决策等多个领域,推动企业运营效率和创新能力的提升。

  • 智能体(Agent)的广泛应用

Gartner在《2025 年十大战略技术趋势报告》中预测,人工智能代理(Agent)将成为最重要的技术趋势,到2028年能够自主完成15%的日常工作决策。智能体将在制造、物流、客户服务等领域广泛应用,成为企业运营的核心工具。Agent有望实现企业提高生产力的愿望。

  • 开源与低成本化

开源与低成 本化的大模型将推动AI应用的普惠化,降低企业使用门槛。同时,由于开源和成本降低,企业自有模型将成为企业优先选择。据IDC《2025年中国人工智能计算力发展评估报告》预测,2025年将有55%的企业使用开源大模型开发应用程序。

  • 云计算重要性更加凸显

训练和部署模型所需的算力和技术支持,仍然限制着众多企业和个人的参与,AI时代大模型和算力迭代演进速度加倍,云计算作为弹性资源供给方,为解决这一问题提供了有效的途径,但传统云厂商也存在局限,像九章云极这样的新兴云算力供应商,提供按用量计费的弹性算力资源的同时,可以为企业提供大模型训练、微调到推理优化的全栈技术服务,帮助企业落地大模型应用,更受到市场认可。

  • 端侧AI与算力需求增长

随着大模型的普及,端侧AI应用将显著增加,智能设备将集成更强的AI能力。同时,AI应用的普及也促使企业对算力基础设施的需求大幅增加。

趋势表明,大模型将在2025年成为企业数字化转型的关键技术,推动各行业的智能化升级。更多中小企业能够享受到智能化带来的红利。

2)企业应用大模型的现状

大模型已经成为企业智能化升级的最重要工具,已经有很多企业利用大模型技术显著提升业务效率或改善客户体验。

客户案例:

九章云极某客户基于实际业务需求启动客户风险智能审核项目,系统整合客户年报等外部数据及企业内部多源数据,以大模型技术为核心,结合RAG、智能体等技术,实现客户尽调、风险审查等报告智能生成及问答,客户风险审核流程从5工作日下降至10分钟以内,业务办理体验和效率大幅改善。

然而,大多数企业在接入大模型时面临诸多挑战。 根据中国信通院在“AI4SE工作组”的研究中,通过对AI4SE“银弹”案例数据、调查问卷反馈数据及企业走访调研数据的分析,揭示了当前企业在大模型应用方面的一些现状。

华为发布的《边缘AI训/推超融合一体机:企业大模型应用落地的关键挑战及解决方案》也分析了目前企业应用大模型的现状和挑战。

大多数企业在应用大模型时面临5大痛点:

  • 组织惯性应对不足:面对AI日新月异的快速迭代,组织无所适从,不能快速响应和拥抱变化。
  • 业务契合度不足:无法精准识别大模型与自身业务契合点,缺乏专业分析能力,难以深入分析业务流程以优化或重塑。
  • 技术应用浅尝辄止:虽超70%企业在软件开发、超60%在软件测试应用大模型等AI技术,但多为初步尝试,专业人才不足,对大模型技术理解与应用有限。
  • 模型定制能力缺失:企业难以基于行业特性与私域数据构建专属定制的自有大模型,多依赖通用模型,无法充分发挥大模型效能。
  • 硬件选型知识匮乏:大模型软硬件种类繁多、参数复杂,企业缺乏专业知识,难以选择适配大模型硬件设施和架构。

这些问题限制了大模型在企业中的有效应用。 那么,面对上述现状,企业该如何应对呢?

二、企业决策时最常见的四个问题

大模型变化日新月异,各种信息眼花缭乱,企业决策者也有不少顾虑或疑问,我们在和多家企业CIO沟通时,总结了4个最常见的问题:

1)大模型应用会给企业带来什么冲击?

大模型比以前的技术具更颠覆性和创新性,对企业管理和组织,对企业的业务都将带来重大的变化,只有经历冲击和重塑才能真正实现企业效率革命。

大模型对企业组织可能的冲击:

  • 管理模式调整:大模型技术迭代迅速,企业战略需紧密关注行业技术前沿,以便及时利用新技术创造竞争优势,传统的层级管理模式需要向更加敏捷的管理模式转变,鼓励快速试错,敢于创新,以快速响应市场和客户。
  • 部门协作模式改变:业务流程融入智能,需要打破原有的部门壁垒,建立更紧密的跨部门协作机制。这可能会导致部门之间的职责划分、沟通方式和协作流程发生重大变化,原有的组织协调机制可能难以适应,容易引发部门间的矛盾和冲突。
  • 产品与服务形态升级:大模型将加速产品智能化(如端侧设备嵌入 AI 智能和云上大模型协同)和服务个性化(如基于用户画像的动态内容生成与智能客服多模态交互),可能进一步推动商业模型革新。
  • 人才结构变革:传统重复性岗位(如数据录入、标准化客服)加速被自动化替代,同时增加AI大模型工程师、数据科学家、AI伦理专家等核心岗位;复合型人才需求激增,企业亟需兼具行业知识与AI技术的“T型人才”;技能升级压力加剧,低技能群体需在2年内完成转型,高技能群体需持续更新知识结构(如大模型技术)。

2)企业组织能力如何升级?

大模型的应用将是对企业效率的革新,企业组织能力需要相应升级,结合行业实践与研究,可采取以下系统性策略:

复合型人才梯队建设:

  • 战略管理型人才:负责 AI 战略规划与落地路径设计,具备大模型技术趋势研判能力,统筹资源配置与组织变革。
  • 技术专精型人才:掌握大模型应用关键技术(如数据准备、大模型微调、智能体应用等),主导自主开发或外部合作项目,确保技术方案的可行性与效率。
  • 业务融合型人才:精通行业业务与 AI 应用,主导大模型场景化落地,负责需求转化、方案设计及跨部门协同,保障技术价值与业务目标一致。

人机协同文化培育:

建立 “AI 辅助决策 + 人类情感沟通” 的协作模式,例如在客户投诉处理中,由 AI 分析问题根源并生成解决方案,人类团队负责情感化回应与复杂问题处理,形成 “机器负责效率,人类专注价值” 的协同机制。

生态伙伴协同能力:

在大模型时代,生态协作能力的重要性远超以往。企业构建大模型能力时,精准界定自建能力范畴与外部协作边界至关重要。大模型架构复杂,技术更新迭代快,若企业独自摸索,不仅耗费大量资源,还易在激烈的市场竞争中错失先机。因此,建议企业选择拥有算力资源且具备大模型全栈能力的合作伙伴(如九章云极)。

优秀的合作伙伴能够凭借专业优势,助力大模型快速落地应用,并依据行业动态、技术发展趋势,持续对模型进行迭代优化,确保企业的大模型应用始终处于行业前沿,在市场竞争中保持强劲的竞争力 。

3)企业应用大模型采用何种形态?

有些企业在上大模型时纠结要选什么参数的大模型以及硬件配置等,实际上大模型的应用可以有多种形式,企业可根据场景需求选择:

  • 云平台 Chatbox

公有云 SaaS 平台提供的 ChatBox 互动服务,支持模型调用与实时联网搜索。适用于内容生成与交互场景(如网页摘要生成、代码片段编写、创意内容生成等)。企业初期验证阶段可通过基础办公场景(网页处理、会议纪要、营销方案生成)快速实现业务提效,建立 “技术辅助而非替代” 的组织认知,降低 AI 落地阻力。

  • 云平台 API 调用

直接调用云平台通用模型 API 服务,通过标准化接口实现业务流程的轻量化 AI 改造。采用按需付费模式降低硬件投入成本,适合企业快速验证大模型价值阶段或预算有限的场景。典型应用包括:智能客服系统、智能合同审核、企业知识库等。企业可考虑依托开源低代码平台 / 智能体平台(如 Dify)构建复杂流程智能体,支持多轮对话、状态管理和跨系统集成,通过可视化编排降低开发门槛,适合需要业务逻辑自动化的企业。

  • 云服务商托管部署

云上大模型一体机提供高性能、可扩展解决方案,预置满血版到蒸馏版大模型,支持从知识库构建到推理加速的全链路服务,通过 VPC 网络与本地数据中心组成混合云架构,在保障数据主权与行业合规的同时满足企业扩展需求,尤其适合高并发、高扩展性场景。

  • 私有化本地部署

采用私有部署的大模型一体机,适合政务审批、军工研发等数据敏感型场景。通过自建数据中心或租用专用服务器实现数据完全本地化处理,确保长期可控性。需注意承担较高硬件成本,并解决模型迭代升级、硬件兼容性等技术挑战,要求企业具备持续技术运维能力。

以上选择需综合考量企业的资源投入、技术实力、应用需求及风险承受能力等因素,在企业准备深度应用大模型之际,从成本效益、实施难度与快速见效等维度出发,优先推荐选用云上大模型 API 或云上一体机。前者凭借标准化接口与按需付费模式,能助力企业以较低成本、较快速度验证大模型价值;后者则提供高性能、可扩展的全链路服务,同时也支持结合私有数据进行微调,以更契合企业个性需求。

4)企业应用大模型如何切入?

企业应用大模型实施路径建议从以下两个维度切入考虑,两个方面并非割裂,可结合评估:

  • 从应用场景切入

大模型虽然具备强大的技术潜力与创新能力,但远非完美,多方面技术还有待突破。在实际的落地中,建议企业优先选择“业务价值可量化(如降本/增收)”和“有一定容错率”的场景切入,通过人机协同实现资源优化,而非盲目追求技术前沿。对大模型优先选择场景的建议:

大量非结构化数据处理需求的场景:如企业有海量的文档、邮件、社交媒体数据、客户反馈等非结构化数据,需要从中提取关键信息、进行情感分析、主题分类等,大模型可利用自然语言处理能力高效处理,如企业对客户的文本投诉进行自动归类和分析。

创意与内容生成场景:广告营销、视频直播等业务需大量创意内容,大模型可快速生成文案、脚本、剧情等,为创作人员提供灵感和基础素材,加速创作过程。

多领域知识融合场景:法务、财务等领域涉及多学科知识交叉应用。大模型可整合多领域知识体系,为法律案例分析、合规审计、跨领域决策等提供智能辅助建议。

企业在选择大模型应用场景时,需结合业务需求、数据资源及技术能力进行精细化评估,并通过“小步快跑”原则降低试错成本。可建立业务价值与风险的三维评估矩阵(技术成熟度、数据可获取性、业务影响面),优先选择高价值低风险场景试点,同时注意建立数据安全防护体系。

  • 从现有应用评估切入

企业可优先评估现有 IT、业务系统对大模型的适配成熟度,重点关注系统架构的模块化程度、API 接口开放能力、供应商在大模型接入领域的技术储备与版本迭代规划。

对于满足基础适配条件的系统,建议优先通过系统升级或补丁更新实现智能化改造。若现有系统存在技术断层或供应商缺乏大模型演进路线图,则需重新规划系统建设方案,可考虑采用容器化微服务架构重构或引入低代码开发平台快速构建大模型适配层。若企业自身技术能力不足,建议选择具备成熟大模型应用经验的供应商联合实施。

三、企业如何构建专属"我的AI"

DeepSeek带来大模型应用门槛降低,推动技术从通用化向行业化、场景化深度渗透,标志着AI平权时代的到来,这是 AI 技术发展进程中的一座关键里程碑,它标志着大模型技术从通用化迈向行业化、场景化的深度渗透。

在这场波澜壮阔的技术革命浪潮之下,包括CIO在内的企业决策者更需高瞻远瞩,以战略家的眼光精心构建真正契合企业自身需求的专属 AI 能力 ——“我的 AI”。这一专属 AI 能力的核心要义,在于将前沿的大模型技术与企业独一无二的基因,即企业特有的数据资源、业务流程以及个性化的业务需求,深度且紧密地结合在一起,从而助力企业塑造独特的竞争优势,使其在激烈的市场竞争中脱颖而出 。

企业若要构建专属的 “我的 AI” 体系,应从组织、人才、业务、技术与规划五个关键维度着手:

1)组织文化革新:重塑AI驱动型组织基因

  • 高层形成共识:取得CEO等高层支持和形成共识,明确AI为“一把手工程”,高层直接参与AI日常应用;建议设立AI专项预算与资源支持;
  • 培养AI优先的文化:鼓励员工接受并拥抱AI技术,将AI视为业务增长引擎而非替代工具,通过创新大赛激发员工参与热情,提高全员对AI的理解和应用能力。必要时将“AI化率”纳入部门考核。
  • 打破部门壁垒:促进跨部门协作,确保数据和技术资源能够在整个组织内自由流动,形成合力推动AI项目的成功实施。

2)人才队伍建设:内部结构升级,外部技术赋能

  • 人才结构升级:建立持续学习文化,打造一支兼备业务洞察力与 AI 技术能力的复合型人才队伍,为团队成员提供不断学习新技术的机会,保持团队对大模型最新技术了解与应用能力,必要时引进掌握前沿 AI 技术的专业人才,以适应AI快速变化。
  • 外部生态协同:选择优秀AI合作伙伴,建立供应商认证体系和外部专家库,与合作伙伴联合制定解决方案和关键服务保障体系,通过合作伙伴提升企业大模型专业能力。

3)业务与产品:智能驱动和升级

大模型的真正价值不在于替代人工,而在于重塑业务逻辑。

企业需打破“AI 即工具”的思维定式,推动 AI 深度融入核心业务,为企业创新业务价值,对大部分企业来说,关键是需要做好以下两点,进步根据企业业务特点有可能推动商业模式的创新:

  • 重构智能决策驱动的业务逻辑

大模型通过实时数据洞察与动态推理,重新定义业务流程的底层逻辑,区别于传统流程优化,大模型通在保留现有业务架构基础上,将大模型的语义解析与预测能力注入关键决策节点。例如合同审查、风险评估等环节通过AI实现毫秒级响应,规避合规盲区的同时提升决策效率3个数量级。这种模式使业务逻辑具备持续进化能力,而非依赖固定规则库的静态机制。

  • 推进产品智能化升级

将大模型作为产品核心组件,构建具备记忆延续性的服务形态,比如将用户行为数据与领域知识结合,构建智能交互产品,如实时生成个性化方案的金融咨询系统、基于健康数据的 AI 诊疗助手,实现从标准化服务向定制化体验的升级。

4)技术底座构建:核心自有+生态合作的智能引擎

企业应用大模型初期利用云上标准大模型服务为主,中长期需规划构建具有弹性化与集约化并存技术基座,保障企业数据安全的同时,充分释放数据的价值。构建专属 AI 需平衡性能、成本与灵活性, 对大部分企业,建议采用“核心自有+生态合作”的混合架构,才能更加敏捷应对快速变化的时代:

  • 混合架构与算力网络:根据业务安全性和负载动态选择部署方式。高安全性要求的应用和业务本地化部署,云上弹性算力应对峰值需求,边缘设备部署轻量化模型实现实时推理,形成混合云架构和“云边端”协同的算力网络。
  • 企业自有大模型:应用大模型初期可利用云上标准大模型服务,中长期需要规划企业自有大模型,建议以开源大模型为基座,结合行业知识库与私有数据进行训练或微调,构建自有垂直领域专属模型,在平衡技术与成本基础上,选择云平台或私有化部署。

5)实施规划:分阶段坚定推进

企业大模型应用建议遵循“文化破冰,试点验证、规模应用、持续迭代”原则,在启动阶段开始规划中长期企业AI构架,具体实施时企业可结合技术成熟度与业务价值构建动态演进路径,以下分阶段推进供参考:

  • 文化破冰期(0-3 个月):****重塑组织认知

通过公有云平台大模型聊天框(ChatBox),聚焦网页摘要生成、会议纪要整理、营销方案创意等基础办公场景,快速实现效率提升,结合高管示范使用(如 CEO 通过 AI 生成周报),开展 “AI 探索周” 活动,通过智能体应用开发探索、创意内容生成等竞赛任务,传递 “人机协同” 价值定位,逐步建立 “技术辅助而非替代” 的协作文化。

在这一阶段,企业的另一关键任务是审慎挑选 AI 合作伙伴,优秀的合作伙伴将为企业提供强大的助力(见前述“生态伙伴协同能力”部分)。

  • 价值验证期(3-9 个月):****高价值场景试点验证商业可行性

优先可选择 “业务价值可量化 + 容错率高” 的场景(如客服工单分类准确率提升、合同条款解析效率优化),通过云大模型 API 快速构建最小可行性产品(MVP)。同时通过人工复核机制确保关键决策的安全性。试点成功后形成标准化实施模板,包括数据预处理流程、提示词工程指南及效果评估矩阵,为规模化推广奠定基础。

  • 规模复制期(9-18 个月):****全业务渗透和重点场景深度应用

将验证成熟的模型封装为智能客服 API、动态定价等微服务组件,初步建立企业"我的AI "1.0, 供业务部门自主订阅,并开发低代码配置平台支持非技术人员自定义流程。

通过将 AI 协作纳入部门 KPI(如内容自动化率)和培养 “AI 文化大使” 传递最佳实践,推动人机协同模式向全业务链复制。针对高价值业务场景,建议和具有专业技能能力的供应商合作,采用 “开源大模型底座 + 企业私有数据” 进行领域微调,构建专属场景大模型,实现业务效率进一步提升 ,并通过 API 接口将模型能力深度耦合至核心业务系统,革新业务效率和客户体验。

  • 持续进化期(18个月 +)全面应用和建立企业AI进化飞轮

本阶段重点推动全场景智能化升级与动态进化,将AI能力深度嵌入供应链预测、产品设计、战略决策等核心领域,建立跨业务线的智能协同网络。例如在核心系统中植入 AI 增强功能(如 CRM 智能预测、ERP 异常检测),形成 “AI 原生” 的业务操作系统。在研发环节,通过多模态大模型实现用户需求自动解析与原型生成,在制造环节结合IoT数据与视觉大模型构建全流程质检系统等。

在以上工作的同时,企业需要持续打造专属 AI ,构建 “人才 - 技术 - 业务” 三位一体的进化飞轮,促进企业 “我的 AI” 系统持续进化,最终以业务需求为导向实现技术价值转化,形成人才驱动技术创新、技术赋能业务增长、业务反哺人才培养的动态闭环,实现 AI 能力与商业价值的螺旋式上升。

结语:AI的终极价值,

在于让组织获得持续革新的生命力

在当下趋势中,大模型已成为各行业提升竞争力的必选项,企业应用大模型是顺应时代发展的必然之举。

这场智能革命,本质上是企业将 AI 技术转化为持续进化能力的比拼。一旦技术迭代速度、业务耦合深度、组织协同效率产生乘数效应,企业便能从被动适应者转变为行业引领者。未来商业边界,将由那些把 AI 基因融入组织,用智能重新定义价值创造方式的企业划定。这需要企业决策者依据 5 年后的业务形态,反向推导当下战略路径,坚决、敏捷地推进 AI 战略落地 —— 建立进化飞轮,让组织获得持续革新的生命力 。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值