LangGraph 概述及用法
LangGraph 是 LangChain 的一个扩展,旨在通过将步骤建模为图中的边缘和节点,构建具有大型语言模型(LLMs)的强大和有状态的多角色应用程序。LangGraph 提供了用于创建常见类型代理的高级接口,以及用于组合自定义流程的低级 API。
LangGraph 的核心概念
LangGraph 将应用程序的工作流程表示为一个图结构,其中:
- 节点(Nodes):代表不同的操作或步骤,例如调用一个 LLM、访问一个数据库、处理用户输入等。
- 边(Edges):代表步骤之间的关系或流程,例如数据流、决策路径等。
这种图形结构允许创建复杂的、有状态的多角色应用程序,每个角色可以独立执行操作,互相通信,并根据前一步骤的结果动态调整。
LangGraph 的主要特点
- 高级接口:LangGraph 提供了用于创建常见代理的高级接口,使开发者可以快速构建代理应用。
- 低级 API:允许开发者自定义和组合自己的工作流程,以满足特定需求。
- 状态管理:支持构建有状态的应用程序,能够在多步骤和多角色之间传递和管理状态。
- 动态调整:基于前一步骤的结果,可以动态调整工作流程,适应不同的情况和需求。
用法示例
以下是一个基本的 LangGraph 用法示例,展示了如何创建一个简单的图结构,并使用 LLM 进行文本生成:
- 安装依赖:
pip install langchain langgraph
- 导入模块并定义图结构:
from langgraph import Graph, Node, Edge
from langchain.llms import OpenAI
# 初始化一个 OpenAI 模型
llm = OpenAI(api_key="your-api-key")
# 创建图结构
graph = Graph()
# 定义节点
node_start = Node("Start")
node_generate_text