对数几率回归

机器学习中常见的任务就是回归和分类,线性回归得到一个连续的取值,而分类需要一个离散的取值,常见的二分类就是用1表示正分类,0表示负分类。因此,就想把得到的连续的值映射到离散的0和1上。
最理想的就是“单位阶跃函数”
y = { 0 , z < 0 0.5 , z = 0 1 , z > 0 y=\left\{\begin{array}{cl} 0, & z<0 \\ 0.5, & z=0 \\ 1, & z>0 \end{array}\right. y=0,0.5,1,z<0z=0z>0
然而,“单位阶跃函数”不是连续的,线性模型得到的是连续的,然后就找到了代替函数:
y = 1 1 + e − z y=\frac{1}{1+e^{-z}} y=1+ez1
称为Sigmoid函数
在这里插入图片描述

极大似然估计计算w

离散型随机变量 y ∈ { 0 , 1 } y \in\{0,1\} y{0,1}的取值为1和0的概率分别为:
p ( y = 1 ∣ x ) = 1 1 + e − ( w T x + b ) = e w T x + b 1 + e w T x + b p(y=1 \mid \boldsymbol{x})=\frac{1}{1+e^{-\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}+b\right)}}=\frac{e^{\boldsymbol{w}^{\mathrm{T}} x+b}}{1+e^{\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}+b}} p(y=1x)=1+e(wTx+b)1=1+ewTx+bewTx+b
p ( y = 0 ∣ x ) = 1 − p ( y = 1 ∣ x ) = 1 1 + e T T x + b p(y=0 \mid \boldsymbol{x})=1-p(y=1 \mid \boldsymbol{x})=\frac{1}{1+e^{\boldsymbol{T}^{\mathrm{T}} \boldsymbol{x}+b}} p(y=0x)=1p(y=1x)=1+eTTx+b1
为了便于讨论,类似多元线性回归,
 令  β = ( w ; b ) , x ^ = ( x ; 1 ) ,  则上式可简写为  p ( y = 1 ∣ x ^ ; β ) = e β T x ^ 1 + e β T x ^ = p 1 ( x ^ ; β ) p ( y = 0 ∣ x ^ ; β ) = 1 1 + e β T x ^ = p 0 ( x ^ ; β ) \begin{aligned} &\text { 令 } \boldsymbol{\beta}=(\boldsymbol{w} ; b), \hat{\boldsymbol{x}}=(\boldsymbol{x} ; 1), \text { 则上式可简写为 }\\ &\begin{aligned} &p(y=1 \mid \hat{\boldsymbol{x}} ; \boldsymbol{\beta})=\frac{e^{\boldsymbol{\beta}^{\mathrm{T}} \hat{\boldsymbol{x}}}}{1+e^{\boldsymbol{\beta}^{\mathrm{T}} \hat{\boldsymbol{x}}}}=p_{1}(\hat{\boldsymbol{x}} ; \boldsymbol{\beta}) \\ &p(y=0 \mid \hat{\boldsymbol{x}} ; \boldsymbol{\beta})=\frac{1}{1+e^{\beta^{\mathrm{T}} \hat{\boldsymbol{x}}}}=p_{0}(\hat{\boldsymbol{x}} ; \boldsymbol{\beta}) \end{aligned} \end{aligned}   β=(w;b),x^=(x;1), 则上式可简写为 p(y=1x^;β)=1+eβTx^eβTx^=p1(x^;β)p(y=0x^;β)=1+eβTx^1=p0(x^;β)

可得随机变量 y ∈ { 0 , 1 } y \in\{0,1\} y{0,1}的概率质量函数为:
p ( y ∣ x ^ ; β ) = y ⋅ p 1 ( x ^ ; β ) + ( 1 − y ) ⋅ p 0 ( x ^ ; β ) p(y \mid \hat{\boldsymbol{x}} ; \boldsymbol{\beta})=y \cdot p_{1}(\hat{\boldsymbol{x}} ; \boldsymbol{\beta})+(1-y) \cdot p_{0}(\hat{\boldsymbol{x}} ; \boldsymbol{\beta}) p(yx^;β)=yp1(x^;β)+(1y)p0(x^;β)
似然函数为: L ( β ) = ∏ i = 1 m p ( y i ∣ x ^ i ; β ) L(\boldsymbol{\beta})=\prod_{i=1}^{m} p\left(y_{i} \mid \hat{\boldsymbol{x}}_{i} ; \boldsymbol{\beta}\right) L(β)=i=1mp(yix^i;β)
取对数:
在这里插入图片描述
在这里插入图片描述

综合y=0和y=1得:
在这里插入图片描述

由于损失函数通常是以最小化为优化目标,所以,将该式最小化加个-号即可,即求:
在这里插入图片描述
的最小值。

(信息论的推导不太会,线不做笔记了)

对数几率回归的三要素
  • 模型:线性模型,输出值的范围为 [ 0 , 1 ] [0,1] [0,1],近似阶跃的单调可微函数
  • 策略:极大似然估计和信息论
  • 算法:梯度下降,牛顿法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

up-to-star

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值