流失预警模型:GBDT模型

GBDT模型简介

Gradient Boosting Decision Tree,梯度提升树
特点

  • 基于简单决策树的组合模型
  • 沿着梯度下降的方向进行提升
  • 只接受数值型连续变量,需做特征值转化
    优点
  • 准确度高
  • 不易过拟合
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

分类器性能指标简介

gbm0 = GradientBoostingClassifier(random_state=10)
gbm0.fit(X_train,y_train)
y_pred = gbm0.predict(X_test)
y_predprob = gbm0.predict_proba(X_test)[:,1]
print("try 1: 使用默认参数的测试集")
print ("Accuracy : %.4g" % metrics.accuracy_score(y_test, y_pred))
print( "AUC Score (Testing): %f" % metrics.roc_auc_score(y_test, y_predprob))


在这里插入图片描述

GBDT在流失预警模型中的应用

如何调参?

param_test1 = {'n_estimators':range(20,81,10)}
gsearch1 = GridSearchCV(estimator = GradientBoostingClassifier(learning_rate=0.1, min_samples_split=300,
                                  min_samples_leaf=20,max_depth=8,max_features='sqrt', subsample=0.8,random_state=10),
                       param_grid = param_test1, scoring='roc_auc',iid=False,cv=5)
gsearch1.fit(X_train,y_train)
print("gsearch1.cv_results_")
print(gsearch1.cv_results_)
print("gsearch1.best_params_")
print(gsearch1.best_params_)
print("gsearch1.best_score_")
print(gsearch1.best_score_)

和随机森林一样,GBDT也可以给出特征重要性

clf = GradientBoostingClassifier(learning_rate=0.05, n_estimators=70,max_depth=9, min_samples_leaf =70,
               min_samples_split =1000, max_features=28, random_state=10,subsample=0.8)
clf.fit(X_train, y_train)
importances = clf.feature_importances_
#sort the features by importance in descending order. by default argsort returing asceding order
features_sorted = argsort(-importances)
import_feautres = [allFeatures[i] for i in features_sorted]
for i in import_feautres:
    print(i)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值