金融评分卡项目—4.GBDT模型在流失预警模型中的应用

本文介绍了GBDT模型在银行客户流失预警中的应用,包括模型介绍、调参过程和变量重要性。通过调整学习率、迭代次数、决策树参数等,优化模型性能。并强调了GBDT在处理非平方损失函数时采用负梯度下降策略,以及其对特征交互作用的处理能力。
摘要由CSDN通过智能技术生成



一、GBDT模型介绍

  梯度提升树是一个集成模型,可用于分类、回归与排序。GBDT的核心在于累加所有树的结果作为最终结果,GBDT可用于分类,并不代表是累加所有分类树的结果。GBDT中的树都是回归树(利用平方误差最小化准则,进行特征选择,生成二叉树),不是分类树,这点对理解GBDT相当重要
  梯度提升树,当损失函数是平方损失时,下一棵树拟合的是上一棵树的残差值(实际值减预测值)。当损失函数是非平方损失时,拟合的是损失函数的负梯度值。

举个简单例子:
A的真实年龄是18岁,但第一棵树的预测年龄是12岁,差了6岁,即残差为6岁。那么在第二棵树里我们把A的年龄设为6岁去学习,如果第二棵树真的能把A分到6岁的叶子节点,那累加两棵树的结论就是A的真实年龄;如果第二棵树的结论是5岁,则A仍然存在1岁的残差,第三棵树里A的年龄就变成1岁,继续学。

  当损失函数是平方差损失时,用残差作为全局最优的绝对方向,并不需要Gradient求解。但是损失函数多种多样,当损失函数是非平方损失时,机器学习界的大牛Freidman提出了梯度提升算法:利用最速下降的近似方法,即利用损失函数的负梯度在当前模型的值,作为回归问题中提升树算法的残差的近似值,拟合一个回归树。
在这里插入图片描述

特点:

  • 基于简单回归决策树的组合模型

    决策树的优点:

    解释性强
    允许变量交互作用
    对离群值、缺失值、共线性不敏感

    决策树的缺点:

    准确度不够高
    易过拟合
    运算量大

  • 沿着梯度下降的方向进行提升

  • 只接受数值型连续变量—需要做特征转化(将类别型变量转换成离散型变量)

优点:

  • 准确度高
  • 不易过拟合
1.该案例GBDT结构

在这里插入图片描述

2.GBDT常用参数

更多参数解析详见sklearn官网
GBDT框架常用参数

n_estimators:分类树的个数,K

learning_rate:即每个弱学习器的权重缩减系数 v v v,也称为步长。较小的 v v v意味着需要更多的弱学习器的迭代次数。
参数n_estimators和learning_rate要一起调参。可以从一个小一点的 v v v开始调参,默认为1,这两个参数关系相反,一个大了,另一个就小了

Subsample:(不放回)抽样率,推荐[0.5,0.8]之间,默认是1.0,即不使用子采样

init:即初始化的时候的弱学习器,一般用在对数据有先验知识,或者之前做过一些拟合的时候

loss:GBDT算法中的损失函数

max_features : {‘auto’, ‘sqrt’, ‘log2’}, int or float, default=None
寻找最佳分割时需要考虑的特性数量:
If int, then consider max_features features at each split.
If float, then max_features is a fraction and int(max_features * n_features) features are considered at each split.
If ‘auto’, then max_features=sqrt(n_features).
If ‘sqrt’, then max_features=sqrt(n_features).
If ‘log2’, then max_features=log2(n_features).
If None, then max_features=n_features.

弱分类树的参数:

max_features:划分时考虑的最大特征数

max_depth:决策树的最大深度

min_samples_split:内部节点再划分时所需的最小样本数。默认是2。如果样本量不大,就不需要管这个值。如果样本量数量级非常大,则推荐增大这个值

min_samples_leaf:叶子节点最少样本数

min_weight_fraction_leaf:叶子节点最小的样本权重。默认是0,就是不考虑权重问题。一般来说,如果我们有较多样本有缺失值,或者分类树样本的分布类别偏差很大,就会引入样本权重,这个时候就要注意这个值。

max_leaf_nodes:最大叶子节点数,通过限制最大叶子节点数,可以防止过拟合

min_impurity_split : 节点划分最小不纯度

二、分类器性能指标—AUC

  如果想弄懂AUC和ROC曲线,一定要彻底理解混淆矩阵的概念!!!
混淆矩阵中有Postitive(阳性)、Negative(阴性)、False(伪)、True(真)的概念

  • 预测类别为0的为Negative(阴性),预测类别为1的为Postitive(阳性)
  • 预测错误的为False(伪)、预测正确为True(真)

对上述概念进行组合,就有了混淆矩阵!
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
ROC计算过程参见该博客

三、GBDT在流失预警模型中的应用

1.调参过程

导入模块、加载数据集、切分数据集

# 导入模块
import pandas as pd
import numpy as np
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.model_selection import train_test_split, KFold, GridSearchCV
from sklearn import ensemble, metrics

# 读取预处理后的数据集
modelData = pd.read_csv(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值