【MATLAB】多目标优化算法NSGA-II(gamultiobj)的使用精解
原始博文因为写的比较潦草,评论中有疑问的网友较多,所以重新写了一下 2021-4-24
增加了一些说明与参考文献,修改了几处笔误 2021-5-20
对于多目标优化(multiobjective optimization)算法NSGA-II实现的细节与原理不在此说明。感兴趣的读者可另行查阅
gamultiobj的使用范式
编写程序
清除所有变量(非必须,但注意变量不能和下面所用的冲突)
clear
- 需求解模型的参数设置部分:(模型导入)
%% 模型设置
% 适应度函数的函数句柄
fitnessfcn=@Fun;
% 变量个数
nvars=4;
% 约束条件形式1:下限与上限(若无取空数组[])
% lb<= X <= ub
lb=[0,0,0,0];
ub=[];
% 约束条件形式2:线性不等式约束(若无取空数组[])
% A*X <= b
A = [0 0 1 1
-1/3 0 0 0
0 -1/2 0 0
0 0 0 0];
b = [48 ; 30 ; 30 ; 0];
% 约束条件形式3:线性等式约束(若无取空数组[])
% Aeq*X == beq
Aeq=[1 1 0 0;0 0 0 0; 0 0 0 0; 0 0 0 0];
beq=[120;0;0;0];
目标函数: (这一段需放在脚本最后或单独放在一个文件里)
function y=Fun(x)
% y是目标函数向量。有几个目标函数y就有多少个维度(数组y的长度)
% 因为gamultiobj是以目标函数分量取极小值为目标,
% 因此有些取极大值的目标函数注意取相反数
y(1)=-(x(1)*100/3 + x(3)*90/3 + x(2)*80/2+x(4)*70/2);
y(2)=x(3)+x(4);
end
gamultiobj
求解器设置部分:
%% 求解器设置
% 最优个体系数paretoFraction
% 种群大小populationsize
% 最大进化代数generations
% 停止代数stallGenLimit
% 适应度函数偏差TolFun
% 函数gaplotpareto:绘制Pareto前沿
options=gaoptimset('paretoFraction',0.3,'populationsize',200,'generations',300,'stallGenLimit',200,'TolFun',1e-10,'PlotFcns',@gaplotpareto);
gamultiobj
求解与结果输出部分:
%% 主求解
[x,fval]=gamultiobj(fitnessfcn,nvars,A,b,Aeq,beq,lb,ub,options)
%% 结果提取
% 因为gamultiobj是以目标函数分量取极小值为目标,
% 因此在y=Fun(x)里取相反数的目标函数再取相反数画出原始情况
plot(-fval(:,1),fval(:,2),'pr')
xlabel('f_1(x)')
ylabel('f_2(x)')
title('Pareto front')
grid on
RUN
求解时间受求解器设置影响,可能会较长,请耐心等待
求解过程中会实时显示当前种群的情况:
如果已经达到满意,也可点击stop
按钮提前结束求解
最后的求解结果,即Pareto最优解集储存在[x,fval]
中,fval
是x
对应的目标函数值。fval
大致构成了一条空间曲线——Pareto前沿。若各个解较为均匀分布,说明该图包含了大部分最优解情况,全局性优,适用性强。在满足Pareto最优的条件下,是没有办法在不让某一优化目标受损的情况下,令另一方目标获得更优的。所以这些解均为最优,对最优解的具体选择可以根据实际情况。
例子1
表1 工厂产品生产规格表
产品 | 生产时间(h/公斤) | 利润(元/公斤) | 加班时利润(元/公斤) |
---|---|---|---|
A | 3 | 100 | 90 |
B | 2 | 80 | 70 |
设工厂每周生产产品A、B的常规生产时长为 x 1 x_1 x1、 x 2 x_2 x2(h),加班生产时长为 x 3 x_3 x3、 x 4 x_4 x4 (h)。令 x = ( x 1 , x 2 , x 3 , x 4 ) x=\left( x_1,x_2,x_3,x_4 \right) x=(x1,x2,x3,x4) 。设每周的利润函数为 Z ( x ) Z(x) Z(x),加班时长函数为 f ( x ) f(x) f(x)。
则目标函数为:
Z
(
x
)
=
x
1
3
×
100
+
x
3
3
×
90
+
x
2
2
×
80
+
x
4
2
×
70
Z\left( x \right) =\frac{x_1}{3}\times 100+\frac{x_3}{3}\times 90+\frac{x_2}{2}\times 80+\frac{x_4}{2}\times 70
Z(x)=3x1×100+3x3×90+2x2×80+2x4×70
f ( x ) = x 3 + x 4 f\left( x \right) =x_3+x_4 f(x)=x3+x4
约束条件为:
s
.
t
.
{
x
1
+
x
2
=
120
x
3
+
x
4
⩽
48
x
1
3
⩾
30
x
2
2
⩾
30
x
1
,
x
2
,
x
3
,
x
4
⩾
0
\mathrm{s}.\mathrm{t}.\left\{ \begin{array}{c} \begin{array}{c} \mathrm{x}_1+\mathrm{x}_2=120\\ \mathrm{x}_3+\mathrm{x}_4\leqslant 48\\ \end{array}\\ \frac{\mathrm{x}_1}{3}\geqslant 30\\ \frac{\mathrm{x}_2}{2}\geqslant 30\\ \mathrm{x}_1,\mathrm{x}_2,\mathrm{x}_3,\mathrm{x}_4\geqslant 0\\ \end{array} \right.
s.t.⎩⎪⎪⎪⎪⎨⎪⎪⎪⎪⎧x1+x2=120x3+x4⩽483x1⩾302x2⩾30x1,x2,x3,x4⩾0
因此,数学模型可以归纳为:
m i n F ( X ) = ( − Z ( x ) , f ( x ) ) min\,\,F\left( X \right) =\left( -Z\left( x \right) ,f\left( x \right) \right) minF(X)=(−Z(x),f(x))
s . t . { x 1 + x 2 = 120 x 3 + x 4 ⩽ 48 x 1 3 ⩾ 30 x 2 2 ⩾ 30 x 1 , x 2 , x 3 , x 4 ⩾ 0 \mathrm{s}.\mathrm{t}.\left\{ \begin{array}{c} \begin{array}{c} \mathrm{x}_1+\mathrm{x}_2=120\\ \mathrm{x}_3+\mathrm{x}_4\leqslant 48\\ \end{array}\\ \frac{\mathrm{x}_1}{3}\geqslant 30\\ \frac{\mathrm{x}_2}{2}\geqslant 30\\ \mathrm{x}_1,\mathrm{x}_2,\mathrm{x}_3,\mathrm{x}_4\geqslant 0\\ \end{array} \right. s.t.⎩⎪⎪⎪⎪⎨⎪⎪⎪⎪⎧x1+x2=120x3+x4⩽483x1⩾302x2⩾30x1,x2,x3,x4⩾0
MATLAB求解如下:
clear
clc
fitnessfcn=@Fun;
% 变量个数
nvars=4;
% lb<= X <= ub
lb=[0,0,0,0];
ub=[270 240 460 130];
% A*X <= b
A = [[13 13.5 14 11.5]
-[13 13.5 14 11.5]
0 0 -1 0
[0.015 0.02 0.018 0.011]];
b = [300*48 ; -300*40 ; -150 ; 20];
% Aeq*X = beq
Aeq=[];beq=[];
%最优个体系数paretoFraction
%种群大小populationsize
%最大进化代数generations
%停止代数stallGenLimit
%适应度函数偏差TolFun
%函数gaplotpareto:绘制Pareto前沿
options=gaoptimset('paretoFraction',0.3,'populationsize',200,'generations',300,'stallGenLimit',200,'TolFun',1e-10,'PlotFcns',@gaplotpareto);
[x,fval]=gamultiobj(fitnessfcn,nvars,A,b,Aeq,beq,lb,ub,options)
plot(-fval(:,1),fval(:,2),'pr')
xlabel('f_1(x)')
ylabel('f_2(x)')
title('Pareto front')
grid on
function y=Fun(x)
b = [270 240 460 130];
c = [300 300 600 200];
t = [190 210 148 100];
s = [200 230 160 114];
a = [0.015 0.02 0.018 0.011];
d = [13 13.5 14 11.5];
y(1)=-sum(x.*(s-t));
y(2)=sum(a.*x);
end
得到结果:
x1 x2 x3 x4如下:
119.231391258967 0.769608488165712 0 0
119.231391258967 0.769608488165712 0 0
0.000499510291359209 120.000482867813 13.1757491344817 34.8252467588411
71.3391090591218 48.6614868846125 3.11344686170493 9.36001224382937
…… …… …… ……
27.0549008917871 92.9459248170927 9.47711506311976 25.3969178809142
8.65187243477257 111.349067997015 13.3680683558073 31.7052095195761
例子2
用
i
=
1
,
2
,
3
,
4
\mathrm{i}=1,2,3,4
i=1,2,3,4分别表示A、B、C、D四种产品,
x
i
x_i
xi表示第i种产品的产量(kg)。设最大产量为
b
i
b_i
bi,销售量为
c
i
c_i
ci,成本为
t
i
t_i
ti,售价为
s
i
s_i
si,能耗为
a
i
a_i
ai,生产时间为
d
i
d_i
di。设该问题的利润函数为
Z
(
x
)
Z\left( x \right)
Z(x),能耗函数为
f
(
x
)
f\left( x \right)
f(x)。
则利润函数为:
Z ( X ) = ∑ i = 1 4 x i ( s i − t i ) Z\left( X \right) =\sum_{i=1}^4{x_i\left( s_i-t_i \right)} Z(X)=i=1∑4xi(si−ti)
能耗函数为:
f ( x ) = ∑ i = 1 4 a i x i f\left( x \right) =\sum_{i=1}^4{a_ix_i} f(x)=i=1∑4aixi
- 建立模型如下
m i n F ( X ) = ( − Z ( x ) , f ( x ) ) minF\left( X \right) =\left( -Z\left( x \right) ,f\left( x \right) \right) minF(X)=(−Z(x),f(x))
s . t . { x i ⩽ b i ( i = 1 , 2 , 3 , 4 ) 300 × 40 ⩽ ∑ i = 1 4 x i d i ⩽ 300 × 48 150 ⩽ x 3 ∑ i = 1 4 a i x i ⩽ 20 x i ⩾ 0 ( i = 1 , 2 , 3 , 4 ) \mathrm{s}.\mathrm{t}.\left\{ \begin{array}{c} \begin{array}{c} x_i\leqslant b_i\left( i=1,2,3,4 \right)\\ 300\times 40\leqslant \sum_{i=1}^4{x_id_i\leqslant 300\times 48}\\ 150\leqslant x_3\\ \end{array}\\ \sum_{i=1}^4{a_ix_i}\leqslant 20\\ x_i\geqslant 0\left( i=1,2,3,4 \right)\\ \end{array} \right. s.t.⎩⎪⎪⎪⎪⎨⎪⎪⎪⎪⎧xi⩽bi(i=1,2,3,4)300×40⩽∑i=14xidi⩽300×48150⩽x3∑i=14aixi⩽20xi⩾0(i=1,2,3,4)
- MATLAB求解如下
% 清除所有变量(非必须)
clear
%% 模型设置
% 获取目标函数的函数句柄
fitnessfcn=@Fun;
% 变量个数
nvars=4;
% 约束条件形式1:(若无取空数组[])
% lb<= X <= ub
lb=[0,0,0,0];
ub=[];
% 约束条件形式2:(若无取空数组[])
% A*X <= b
A = [0 0 1 1
-1/3 0 0 0
0 -1/2 0 0
0 0 0 0];
b = [48 ; 30 ; 30 ; 0];
% 约束条件形式3:(若无取空数组[])
% Aeq*X = beq
Aeq=[1 1 0 0;0 0 0 0; 0 0 0 0; 0 0 0 0];
beq=[120;0;0;0];
%% 求解器设置
% 最优个体系数paretoFraction
% 种群大小populationsize
% 最大进化代数generations
% 停止代数stallGenLimit
% 适应度函数偏差TolFun
% 函数gaplotpareto:绘制Pareto前沿
options=gaoptimset('paretoFraction',0.3,'populationsize',200,'generations',300,'stallGenLimit',200,'TolFun',1e-10,'PlotFcns',@gaplotpareto);
%% 主求解
[x,fval]=gamultiobj(fitnessfcn,nvars,A,b,Aeq,beq,lb,ub,options)
%% 结果提取
% 因为gamultiobj是以目标函数分量取极小值为目标,
% 因此在y=Fun(x)里取相反数的目标函数再取相反数画出原始情况
plot(-fval(:,1),fval(:,2),'pr')
xlabel('f_1(x)')
ylabel('f_2(x)')
title('Pareto front')
grid on
function y=Fun(x)
% y是目标函数向量。有几个目标函数y就有多少个维度(数组y的长度)
% 因为gamultiobj是以目标函数分量取极小值为目标,
% 因此有些取极大值的目标函数注意取相反数
y(1)=-(x(1)*100/3 + x(3)*90/3 + x(2)*80/2+x(4)*70/2);
y(2)=x(3)+x(4);
end
求解结果为:
x1 x2 x3 x4如下:
257.911499184609 147.920309053797 368.392357989384 129.803238959239
204.527452370415 215.831670926692 376.135110383218 129.541339137201
251.942563886570 239.988410149935 456.713154231118 129.635721179650
…… …… …… ……
245.261897051381 238.784443203755 429.044675830294 129.548264747046
216.531507460989 201.737471951873 368.856283121162 129.726418090506
参考文献:
K. Deb, S. Agrawal, A. Pratap, T. Meyarivan. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002 6(2): 182-197.