【现代通信原理】3 模拟调制系统
~30%
重点
-
调制的目的与意义:适合信道、多路复用、拓展带宽、互换传输带宽与信噪比
-
载波调制、脉冲调制(“6.3 模拟脉冲调制”[^1] PAM、PDM、PPM)
-
幅度调制4种:设计上的递进关系。
- 着重常规调幅和 DSB。掌握原理框图每个点的原理波形、调制表达式、调幅指数、效率、解调同理、DSB 相干解调同步问题
-
角度调制、同理、频谱特点、带宽
文章目录
调制的概念
调制的目的
- 将调制信号转换成适合于信道传输的已调信号
- 通过把多个基带信号分别搬移到不同的载频处,实现信道的多路复用,提高信道利用率
- 扩展信号带宽,提高系统抗干扰、抗衰落能力
- 实现传输带宽与信噪比之间的互换
调制的定义
调制就是把信号转换成适合在信道中传输形式的过程
- 广义调制分为基带调制和载波调制,载波调制是用调制信号(基带信号)控制载波的某个(或几个)参数的过程
- 狭义的调制就是指载波调制
调制的分类
根据载波类型、调制信号、载波参数变化的不同进行分类
-
连续波调制
-
模拟连续波调制
-
幅度调制
- AM
- DSB-SC
- SSB
- VSB
-
角度调制
- FM
- PM
-
-
数字连续波调制
-
-
脉冲调制
- 模拟脉冲调制
- 数字脉冲调制
调制模型
幅度调制
幅度调制——用消息去控制正弦载波的幅度变化
- 常规调幅( Conv. AM )conventional
- 抑制载波双边带调幅( DSB-SC )
- 单边带调幅( SSB )
- 残留边带调幅( VSB )
线性调制
常规调幅 (conventional AM)
s A M ( t ) = A c [ 1 + m ( t ) ] cos 2 π f c t s_{A M}(t)=A_{c}[1+m(t)] \cos 2 \pi f_{c} t sAM(t)=Ac[1+m(t)]cos2πfct
频谱特点
- 频带信号: 位于载频 f c f_{c} fc,
- 带宽 B T = 2 B B_{T}=2 B BT=2B
- 上、下两个边带:
上边带 (USB) 一高于 f c f_{c} fc 的边带
下边带 (LSB) 一低于 f c f_{c} fc 的边带 - ± f c \pm f_{c} ±fc 处有两个冲激, 有纯载波。
波形特点
消息突显在载波包络上
调幅指数
β A M = m a x ∣ m ( t ) ∣ \beta_{AM}= \mathrm{max} {\left|m(t)\right| } βAM=max∣m(t)∣
正常、临界、过调制
波形特点
消息突显在载波包络上
调幅指数
β A M = m a x ∣ m ( t ) ∣ \beta_{AM}= \mathrm{max} {\left|m(t)\right| } βAM=max∣m(t)∣
发送与接收
产生:加、乘
接收:包络检波
功率与效率
峰值平均功率比(PAPR—Peak to Average Power Ratio)
P R A P m ( t ) = m a x ∣ m ( t ) ∣ 2 m 2 ( t ) ‾ \mathrm{PRAP}_{m(t)} = \frac{\mathrm{max} {\left| m(t) \right|}^2}{\overline{m^2(t)}} PRAPm(t)=m2(t)max∣m(t)∣2
调制效率
η A M = P m P A M = P m P m + P c = m 2 ( t ) ‾ 1 + m 2 ( t ) ‾ \eta_{A M}=\frac{P_{m}}{P_{A M}}=\frac{P_{m}}{P_{m}+P_{c}}=\frac{\overline{m^{2}(t)}}{1+\overline{m^{2}(t)}} ηAM=PAMPm=Pm+PcPm=1+m2(t)m2(t)
η A M − 临界 = 1 1 + P A P R m ( t ) \eta_{A M_{-} \text {临界}}=\frac{1}{1+P A P R_{m(t)}} ηAM−临界=1+PAPRm(t)1
正弦测试信号PAPR=2, η A M \eta_{A M} ηAM = 33%
评价
接收简单,廉价实用
抑制载波双边带调幅( DSB-SC )
解决: ± f c \pm f_c ±fc 处有两个冲击
频谱特点
- 频带信号: 位于载频 f c f_{c} fc,
- 带宽 B T = 2 B B_{T}=2 B BT=2B
- 上、下两个边带:
上边带 (USB) 一高于 f c f_{c} fc 的边带
下边带 (LSB) 一低于 f c f_{c} fc 的边带 ± f c \pm f_{c} ±fc 处有两个冲激, 有纯载波。
功率与调制效率
P D S B = s D S B 2 ( t ) ‾ = A c 2 m 2 ( t ) cos 2 2 π f c t ‾ = P m = A c 2 m 2 ( t ) ‾ / 2 η D S B = 1 \begin{aligned} P_{D S B} &=\overline{s_{D S B}^{2}(t)}=\overline{A_{c}^{2} m^{2}(t) \cos ^{2} 2 \pi f_{c} t} \\ &=P_{m}=A_{c}^{2} \overline{m^{2}(t)} / 2 \\ \eta_{D S B} &=1 \end{aligned} PDSBηDSB=sDSB2(t)=Ac2m2(t)cos22πfct=Pm=Ac2m2(t)/2=1
发送与接收方法
产生:乘
接收:乘本振、低通
需要同步的原因是要移到中间
LPF:低通滤波器
同步问题
相干解调——需要与载波同步的本地振荡
非相干解调——不需要与载波同步的本地振荡,如,包络检波
锁相环(Phase-Lock-Loop)
VCO: 用一个可控振荡器产生本振
比较:与含有载波信息的信号进行比较,看差距多大
反馈:用误差改进振荡
滤波:“长期观察”,不要草率调节
L P F B { A c m ( t ) cos 2 π f c t × cos ( 2 π f o t + θ o ) } = L P F B { 1 2 A c m ( t ) { cos [ 2 π ( f 0 − f c ) t + Δ θ ] + cos [ 2 π ( f 0 + f c ) t + Δ θ ] } } = 1 2 A c m ( t ) cos [ 2 π ( f 0 − f c ) t + Δ θ ] \begin{aligned} L P F_{\mathrm{B}} &\left\{A_{c} m(t) \cos 2 \pi f_{c} t \times \cos \left(2 \pi f_{o} t+\theta_{o}\right)\right\} \\ &=L P F_{\mathrm{B}}\left\{\frac{1}{2} A_{c} m(t)\left\{\begin{array}{l} \cos \left[2 \pi\left(f_{0}-f_{c}\right) t+\Delta \theta\right] \\ +\cos \left[2 \pi\left(f_{0}+f_{c}\right) t+\Delta \theta\right] \end{array}\right\}\right\} \\ &=\frac{1}{2} A_{c} m(t) \cos \left[2 \pi\left(f_{0}-f_{c}\right) t+\Delta \theta\right] \end{aligned} LPFB{Acm(t)cos2πfct×cos(2πfot+θo)}=LPFB{21Acm(t){cos[2π(f0−fc)t+Δθ]+cos[2π(f0+fc)t+Δθ]}}=21Acm(t)cos[2π(f0−fc)t+Δθ]
评价
效率高,噪声性能好
需要复杂的PLL
单边带( SSB )
SSB(single side band)
解决:对称的冗余
LSB、USB信号公式
s S S B ( t ) = 1 2 A c m ( t ) cos 2 π f c t ∓ 1 2 A c m ^ ( t ) sin 2 π f c t s_{S S B}(t)=\frac{1}{2} A_{c} m(t) \cos 2 \pi f_{c} t\mp \frac{1}{2} A_{c} \hat{m}(t) \sin 2 \pi f_{c} t sSSB(t)=21Acm(t)cos2πfct∓21Acm^(t)sin2πfct
− - −:上边带
+ + +:下边带
$ \hat{m}(t)$:希尔伯特变换,简单来说就是幅度不变, 所有频率分量相移 π / 2 \pi/2 π/2
希尔伯特变换(Hilbert变化) - 知乎 (zhihu.com)
3、Hilbert变换的主要性质
- Hilbert变换保持能量守恒
- [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-EZ8RXrSq-1648036222622)(https://www.zhihu.com/equation?tex=f%28t%29)] 和 [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-0zBVL0xb-1648036222623)(https://www.zhihu.com/equation?tex=%5Ctilde%7Bf%7D%28t%29)] 互为奇偶函数
- [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-gV5qFdxr-1648036222624)(https://www.zhihu.com/equation?tex=f%28t%29)] 和 [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-a635dqKY-1648036222624)(https://www.zhihu.com/equation?tex=%5Ctilde%7Bf%7D%28t%29)]正交
4、常用的Hilbert变换对
接收方法
相干解调器
如加入足够的载波,也可用包络检波器
SSB的相移生成方法
评价
带宽 = B
残留边带( VSB )调幅
“残留”一点, 只要过渡带形状 满足对称互补
角度调制
瞬时相位,对应于载波的瞬时相位偏移,角频率,瞬时频偏 d d t ( ϕ ( t ) ) \frac{d}{dt}(\phi(t)) dtd(ϕ(t))
FM 与 PM
频率和相位之间存在积分关系,可以相互转换
- 间接调相:调制信号->微分->调频->得调相波
- 间接调频:调制信号->积分->调相->得调频波
FM, 积分器->PM调制器
PM,微分器->FM调制器
PM可能间断,带宽宽;
FM必定连续,带宽高效
同一个已调信号可以是FM与PM信号, 看起来令人困惑。
FM与PM波形是相对的、关联的。
FM或PM是恒幅波
不怕非线性失真!大功率放大器的常见问题。
角度调制的基本参数
调制的程度
最大频偏/相偏
- 正比于调制系数 k F M k_{FM} kFM 与 k P M k_{PM} kPM
- 正比于消息信号的(最大)幅度
正弦消息特例与调制指数
时域表达式,调相指数表示最大频偏,调频指数表示最大相偏
角度调制的带宽与频谱特点
带宽 Carson 公式
D D D :频偏比,正是调制指数 β
D = Δ f m a x B D=\frac{\Delta f_{max}}{B} D=BΔfmax
B T = 2 Δ f m a x + 2 B = 2 ( D + 1 ) B B_T = 2 \Delta f_{max} + 2B = 2(D+1)B BT=2Δfmax+2B=2(D+1)B
卡森公式, 广泛用于计算调频信号带宽,可用于单一频率和非单一频率的调频,这里调制指数代表最大频偏与最高调制频率F的比值,其等于最大角频偏与最大角频率的比值。
普通单声道调频广播中,调制信号的最大频偏为75KHZ,最高调制频率F为15KHZ,故调频指数 =5,由公式可计算出此FM信号的频带宽度为180KHZ
频谱特点
考虑正弦消息信号的FM情况:
m ( t ) = a cos ( 2 π f m t ) s ( t ) = A c cos [ 2 π f c t + β sin ( 2 π f m t ) ] m(t)=a \cos \left(2 \pi f_{m} t\right) \\ s(t)=A_{c} \cos \left[2 \pi f_{c} t+\beta \sin \left(2 \pi f_{m} t\right)\right] m(t)=acos(2πfmt)s(t)=Accos[2πfct+βsin(2πfmt)]
- β < < 1 \beta<<1 β<<1 : 窄带角调制; β \beta β 变大时为宽带角调制;
- B T B_{T} BT 是以 Carson 公式估算, 准确地反映了信号的 带宽,对应部分包括约 99%的功率;
- m ( t ) m(t) m(t) 为正弦周期函数, 产生的调制信号是周期的。 频谱形状为基频的大量谱线构成, 细节变化大。
在功率上调频信号平均功率等于未调载波平均功率,只是将原载波中部分功率分配给每个边频分量,分配原则与调频指数相关
评价
高品质源于宽频带
- 宽带调频应用广泛
- 窄带调频应用较少
相对的,AM 广播采用一般语音消息,调制后 2x4=8(kHz)。 电台频带工作在1MHz上下(中波),只需10kHz。干扰易引起幅度变化,抗干扰能力差,音质不佳。
高品质的 FM 广播工作在100MHz上下(超短波),频带需200kHz。横幅特性利于抗干扰,音质好,传播距离较近。
附录
作业
既然模拟信号可以采用基带传输的方式进行传输,为什么还要引入频带传输?
正确答案:
频谱资源的复用
不同频率信道的传输信道特性差异
扩展带宽,提高抗干扰能力
带宽和信噪比的互换
已知调制信号 m ( t ) = c o s ( 2000 π t ) m(t)=cos(2000 \pi t) m(t)=cos(2000πt),载波为 2 c o s 1 0 4 π t 2cos10^4\pi t 2cos104πt,分别写出AM、DSB、USB、LSB信号的时域表示式,并画出频谱图。
已知某单频调频波的振幅是10V,瞬时频率为 f ( t ) = 1 0 6 + 1 0 4 c o s 2 π 1 0 3 t ( H z ) f(t)=10^6+10^4cos2 \pi 10^3 t \mathrm{(Hz)} f(t)=106+104cos2π103t(Hz),
(1)此调频波的表达式
(2)此调频波的最大频率偏移、调频指数和频带宽度
Deepseek R1:
已知某单频调频波的振幅是10V,瞬时频率为 f ( t ) = 1 0 6 + 1 0 4 cos ( 2 π × 1 0 3 t ) Hz f(t)=10^6 + 10^4 \cos(2\pi \times 10^3 t) \ \text{Hz} f(t)=106+104cos(2π×103t) Hz,
(1)此调频波的表达式:
调频波的表达式可以通过对瞬时频率积分得到相位,然后代入振幅得到。瞬时频率 f ( t ) f(t) f(t)的积分结果如下:
θ ( t ) = 2 π ∫ 0 t f ( t ′ ) d t ′ = 2 π ∫ 0 t ( 1 0 6 + 1 0 4 cos ( 2 π × 1 0 3 t ′ ) ) d t ′ \theta(t) = 2\pi \int_0^t f(t') \, dt' = 2\pi \int_0^t \left(10^6 + 10^4 \cos(2\pi \times 10^3 t')\right) \, dt' θ(t)=2π∫0tf(t′)dt′=2π∫0t(106+104cos(2π×103t′))dt′
积分分为两部分:
∫ 0 t 1 0 6 d t ′ = 1 0 6 t \int_0^t 10^6 \, dt' = 10^6 t ∫0t106dt′=106t
∫ 0 t 1 0 4 cos ( 2 π × 1 0 3 t ′ ) d t ′ = 1 0 4 2 π × 1 0 3 sin ( 2 π × 1 0 3 t ) = 10 2 π sin ( 2 π × 1 0 3 t ) \int_0^t 10^4 \cos(2\pi \times 10^3 t') \, dt' = \frac{10^4}{2\pi \times 10^3} \sin(2\pi \times 10^3 t) = \frac{10}{2\pi} \sin(2\pi \times 10^3 t) ∫0t104cos(2π×103t′)dt′=2π×103104sin(2π×103t)=2π10sin(2π×103t)
因此,相位为:
θ ( t ) = 2 π × 1 0 6 t + 10 sin ( 2 π × 1 0 3 t ) \theta(t) = 2\pi \times 10^6 t + 10 \sin(2\pi \times 10^3 t) θ(t)=2π×106t+10sin(2π×103t)
调频波的表达式为:
s ( t ) = 10 cos ( 2 π × 1 0 6 t + 10 sin ( 2 π × 1 0 3 t ) ) s(t) = 10 \cos\left(2\pi \times 10^6 t + 10 \sin(2\pi \times 10^3 t)\right) s(t)=10cos(2π×106t+10sin(2π×103t))
(2)此调频波的最大频率偏移、调频指数和频带宽度:
- 最大频率偏移 Δ f \Delta f Δf:瞬时频率相对于载波频率的最大偏移量为 1 0 4 Hz 10^4 \ \text{Hz} 104 Hz,即 Δ f = 10 kHz \Delta f = 10 \ \text{kHz} Δf=10 kHz。
- 调频指数 β \beta β:最大频率偏移与调制信号频率的比值, β = Δ f f m = 1 0 4 1 0 3 = 10 \beta = \frac{\Delta f}{f_m} = \frac{10^4}{10^3} = 10 β=fmΔf=103104=10。
- 频带宽度:根据卡森公式,频带宽度为 2 ( Δ f + f m ) = 2 ( 1 0 4 + 1 0 3 ) = 22 kHz 2(\Delta f + f_m) = 2(10^4 + 10^3) = 22 \ \text{kHz} 2(Δf+fm)=2(104+103)=22 kHz。
最终答案:
(1)此调频波的表达式 10 cos ( 2 π × 1 0 6 t + 10 sin 2 π × 1 0 3 t ) \boxed{10 \cos\left(2\pi \times 10^6 t + 10 \sin 2\pi \times 10^3 t\right)} 10cos(2π×106t+10sin2π×103t);
(2)最大频率偏移为 10 kHz \boxed{10\ \text{kHz}} 10 kHz,调频指数为 10 \boxed{10} 10,频带宽度为 22 kHz \boxed{22\ \text{kHz}} 22 kHz。
三角变换
sin 2 α = 2 sin α cos α cos 2 α = cos 2 α − sin 2 α = 2 cos 2 α − 1 = 1 − 2 sin 2 α tan 2 α = 2 tan α 1 − tan 2 α \sin 2\alpha =2\sin \alpha \cos \alpha \\ \cos 2\alpha =\cos ^2\alpha -\sin ^2\alpha \\ =2\cos ^2\alpha -1 \\ =1-2\sin ^2\alpha \\ \tan 2\alpha =\frac{2\tan \alpha}{1-\tan ^2\alpha} sin2α=2sinαcosαcos2α=cos2α−sin2α=2cos2α−1=1−2sin2αtan2α=1−tan2α2tanα
sin 2 α 2 = 1 − cos α 2 cos 2 α 2 = 1 + cos α 2 tan α 2 = sin α 1 + cos α \sin ^2\frac{\alpha}{2}=\frac{1-\cos \alpha}{2} \\ \cos ^2\frac{\alpha}{2}=\frac{1+\cos \alpha}{2} \\ \tan \frac{\alpha}{2}=\frac{\sin \alpha}{1+\cos \alpha} sin22α=21−cosαcos22α=21+cosαtan2α=1+cosαsinα
sin ( α + β ) = sin α cos β + cos α sin β sin ( α − β ) = sin α cos β − cos α sin β cos ( α + β ) = cos α cos β − sin α sin β cos ( α − β ) = cos α cos β + sin α sin β tan ( α + β ) = tan α + tan β 1 − tan α tan β tan ( α − β ) = tan α − tan β 1 + tan α tan β \sin \left( \alpha +\beta \right) =\sin \alpha \cos \beta +\cos \alpha \sin \beta \\ \sin \left( \alpha -\beta \right) =\sin \alpha \cos \beta -\cos \alpha \sin \beta \\ \cos \left( \alpha +\beta \right) =\cos \alpha \cos \beta -\sin \alpha \sin \beta \\ \cos \left( \alpha -\beta \right) =\cos \alpha \cos \beta +\sin \alpha \sin \beta \\ \tan \left( \alpha +\beta \right) =\frac{\tan \alpha +\tan \beta}{1-\tan \alpha \tan \beta} \\ \tan \left( \alpha -\beta \right) =\frac{\tan \alpha -\tan \beta}{1+\tan \alpha \tan \beta} sin(α+β)=sinαcosβ+cosαsinβsin(α−β)=sinαcosβ−cosαsinβcos(α+β)=cosαcosβ−sinαsinβcos(α−β)=cosαcosβ+sinαsinβtan(α+β)=1−tanαtanβtanα+tanβtan(α−β)=1+tanαtanβtanα−tanβ
sin α + sin β = 2 sin α + β 2 ⋅ cos α − β 2 sin α − sin β = 2 sin α − β 2 ⋅ cos α + β 2 cos α + cos β = 2 cos α + β 2 ⋅ cos α − β 2 cos α − cos β = − 2 sin α + β 2 ⋅ sin α − β 2 2 cos α cos β = cos ( α − β ) + cos ( α + β ) 2 sin α sin β = cos ( α + β ) − cos ( α + β ) 2 sin α cos β = sin ( α − β ) + sin ( α + β ) \sin \alpha +\sin \beta =2\sin \frac{\alpha +\beta}{2}\cdot \cos \frac{\alpha -\beta}{2} \\ \sin \alpha -\sin \beta =2\sin \frac{\alpha -\beta}{2}\cdot \cos \frac{\alpha +\beta}{2} \\ \cos \alpha +\cos \beta =2\cos \frac{\alpha +\beta}{2}\cdot \cos \frac{\alpha -\beta}{2} \\ \cos \alpha -\cos \beta =-2\sin \frac{\alpha +\beta}{2}\cdot \sin \frac{\alpha -\beta}{2} \\ 2\cos \alpha \cos \beta =\cos \left( \alpha -\beta \right) +\cos \left( \alpha +\beta \right) \\ 2\sin \alpha \sin \beta =\cos \left( \alpha +\beta \right) -\cos \left( \alpha +\beta \right) \\ 2\sin \alpha \cos \beta =\sin \left( \alpha -\beta \right) +\sin \left( \alpha +\beta \right) sinα+sinβ=2sin2α+β⋅cos2α−βsinα−sinβ=2sin2α−β⋅cos2α+βcosα+cosβ=2cos2α+β⋅cos2α−βcosα−cosβ=−2sin2α+β⋅sin2α−β2cosαcosβ=cos(α−β)+cos(α+β)2sinαsinβ=cos(α+β)−cos(α+β)2sinαcosβ=sin(α−β)+sin(α+β)
示例
m(t) 波形和功率谱
AM 信号的波形和频谱:
DSB 信号的波形和频谱:
SSB
残留边带信号
角度调制