在Transformer模型的解码器中,掩码机制(masking)起着至关重要的作用,特别是在训练阶段。掩码机制用于确保解码器在计算自注意力时,只能使用当前位置之前的词(包括当前位置),而不能看到当前位置之后的词。这是为了保持因果关系,防止信息泄漏。下面详细说明解码器的掩码机制是如何起作用的,以及如何实现每个时间步的并行处理。
一、掩码机制的作用
在解码器的自注意力层中,掩码机制的主要作用是防止解码器在计算注意力时看到未来的词(即当前位置之后的词),确保生成序列的每个位置只依赖于它之前的位置,从而保持序列生成的因果关系。
二、掩码的具体实现
掩码机制通过一个上三角矩阵来实现,这个矩阵中的元素表示哪些位置应该被掩盖(mask)。具体步骤如下:
1. 生成掩码矩阵
假设目标序列长度为 \( T \),生成一个 \( T \times T \) 的掩码矩阵 \( M \),其中 \( M_{ij} \) 表示第 \( i \) 个位置是否可以看到第 \( j \) 个位置的词。
这个矩阵是一个上三角矩阵的取反,表示第 \( i \) 个位置只能看到自己和之前的位置:
\[
M_{ij} = \begin{cases}
0 & \text{if } i \geq j \\
-\infty & \text{if