高数 | 定理及性质证明 | 含有第一类间断点和无穷间断点的函数f(z)在包含该间断点的区间内必没有原函数F(z).

本文探讨了可导函数的导数并不必然连续,当存在间断点时,必定为第二类间断,特别是振荡间断。通过实例和导数介值定理说明,即使有原函数,也不一定对应于标准积分。重点在于间断点的类型及其对函数性质的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

含有第一类间断点和无穷间断点的函数f(z)在包含该间断点的区间内必没有原函数F(z).

 


可导函数的导函数一定连续吗? - 知乎

综合以上几点﹐可以得出重要结论:

可导函数F(x)求导后的函数F'(x)=f(z)不一定是连续函数,

但是如果有间断点,一定是第二类间断点(在考研的范畴内,只能是振荡间断点).

 也可以从导数介值定理的方面来证明


 例题

震荡虽然有原函数,但不一定是那个积分!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

西皮呦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值