含有第一类间断点和无穷间断点的函数f(z)在包含该间断点的区间内必没有原函数F(z).
综合以上几点﹐可以得出重要结论:
可导函数F(x)求导后的函数F'(x)=f(z)不一定是连续函数,
但是如果有间断点,一定是第二类间断点(在考研的范畴内,只能是振荡间断点).
也可以从导数介值定理的方面来证明
例题
震荡虽然有原函数,但不一定是那个积分!
含有第一类间断点和无穷间断点的函数f(z)在包含该间断点的区间内必没有原函数F(z).
综合以上几点﹐可以得出重要结论:
可导函数F(x)求导后的函数F'(x)=f(z)不一定是连续函数,
但是如果有间断点,一定是第二类间断点(在考研的范畴内,只能是振荡间断点).
震荡虽然有原函数,但不一定是那个积分!