连续,可积,存在原函数,变上限积分

连续,可积,存在原函数

六条路只有两条能通

在这里插入图片描述

可积但不存在原函数

f(x)存在原函数, 即存在可导函数F(x), 使f(x) = F’(x)对定义域内的任意x成立.
导数介值定理,f(x)有无穷间断点一定没有原函数

若F(x)在一个区间上处处可导, 则导函数F’(x)在该区间内没有第一类间断点(Lagrange中值定理)

f ( x ) = { 0      ,    0    ≤    x    <    1 / 2 1      , 1 / 2    ≤    x    ≤    1 f(x)=\left\{\begin{array}{l}0\;\;,\;0\;\leq\;x\;<\;1/2\\1\;\;,1/2\;\leq\;x\;\leq\;1\end{array}\right.\\ f(x)={0,0x<1/21,1/2x1
f ( x ) 在 [ 0 , 1 ] 上 有 界 , 且 只 有 一 个 间 断 点 x = 1 / 2 , 因 此 f ( x ) 在 [ 0 , 1 ] 是 R i e m a n n 可 积 的 . 但 是 x = 1 / 2 是 f ( x ) 的 第 一 类 间 断 点 , 因 此 f ( x ) 在 [ 0 , 1 ] 没 有 原 函 数 . f(x)在[0,1]上有界, 且只有一个间断点x = 1/2, 因此f(x)在[0,1]是Riemann可积的.\\ 但是x = 1/2是f(x)的第一类间断点, 因此f(x)在[0,1]没有原函数. f(x)[0,1],x=1/2,f(x)[0,1]Riemann.x=1/2f(x),f(x)[0,1].

存在原函数但不可积

在闭区间[a,b]上Riemann可积需要两个方面的条件: 有界性和连续性(不连续点是零测集).
在这里插入图片描述

参考


变上限积分

变上限积分在被积函数在区间内有可去间断点时可导,但是它并不是那个被积函数的原函数,变上限积分在间断点处的导数值是被积函数在该点的极限值。
变上限积分只是一种抽象的函数,并不是基本初等函数类型的函数,但也是属于原函数的一种,而且用它可以表示出任何被积函数的原函数,即使有些被积函数并不存在形式为基本初等函数的原函数。

f ( x ) = { 0      ,      x    ≠ 0 1      ,      x = 0 f ( x ) 没 有 原 函 数 , F ( x ) = 0 是 f ( x ) 的 变 上 限 积 分 函 数 f(x)=\left\{\begin{array}{l}0\;\;,\;\;x\;\neq0\\1\;\;,\;\;x=0\end{array}\right.\\ f(x)没有原函数,F(x)=0是f(x)的变上限积分函数 f(x)={0,x=01,x=0f(x)F(x)=0f(x)

连续性

f ( x ) 在 [ a , b ] 可 积 , 则 ∫ a x f ( x ) d x 在 [ a , b ] 上 连 续 f(x)在[a,b]可积,则\int_a^xf(x)dx在[a,b]上连续 f(x)[a,b]axf(x)dx[a,b]

可导性

f ( x ) 在 [ a , b ] 连 续 , 则 ∫ a x f ( x ) d x 在 [ a , b ] 上 可 导 且 有 变 上 限 求 导 公 式 f(x)在[a,b]连续,则\int_a^xf(x)dx在[a,b]上可导且有变上限求导公式 f(x)[a,b]axf(x)dx[a,b]

奇偶性

f ( x ) 为 奇 函 数 , ∫ a x f ( x ) d x 为 偶 函 数 f ( x ) 为 偶 函 数 , ∫ 0 x f ( x ) d x 为 奇 函 数 f(x)为奇函数,\int_{ a }^{x}f(x)dx为偶函数\\ \\ f(x)为偶函数,\int_{0}^{x}f(x)dx为奇函数\\ f(x),axf(x)dxf(x),0xf(x)dx

  • 17
    点赞
  • 75
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值