【note】


前言

一些完善做题方法,方便复习的笔记


一、间断点是什么?

在这里插入图片描述

f(x)在某点x0的去心邻域内有定义,且在该点
1.无定义
2.有定义但极限不存在
3.极限存在但不等于该点处函数值
称函数在x0处不连续,x0即间断点

1.间断点类型特征

函数在该点处可以无定义

第一类间断点
可去间断点:函数在该点左极限、右极限存在且相等,但极限值不等于该点函数值。(可补充定义)

跳跃间断点:函数在该点左极限、右极限存在,但不相等。
(若有定义,则函数值与左右极限各不相干)

第二类间断点
无穷间断点:函数左极限和右极限中至少有一个不存在,并且不存在的时候极限是∞(注:极限是∞属于极限不存在的情况),称为无穷间断点。如函数f(x)=1/x,在0处无定义,x→0−时f(x)→−∞,x→0+时f(x)→+∞,这里0就是函数的一个无穷间断点。

振荡间断点:而如果函数左极限和右极限中至少有一个不存在并且也不为∞,这时就称为函数的振荡间断点(注:是极限振荡不存在的情况,并不是∞),函数图像有震荡现象。函数sin1/x在0处没有定义,当x趋于0时,1/x趋于∞,函数值在-1和1之间变动无限多次,所以0为它的振荡间断点。

2.有什么区别

如何区分(1)第一类间断点和第二类间断点呢?(2)第二类间断点中的无穷振荡点和振荡间断点呢?其实只要把握好本质上区别就好。
(1)第一类就是左右极限都存在。但是不等于该点的函数值,左右极限也相等时,称为可去间断点;不相等时,为跳跃间断点。
(2)第二类就是左右极限有一个不存在。第二类又可分为两类:即无穷间断点和振荡间断点。这二者的区分也是很显然的。无穷间断点,要求极限值一直保持无穷大。而振荡间断点在趋近它的时侯,取值在不断的变化,不一定为无穷。用你的例子:sin1/xx趋向0的过程中,一旦x=1/(2kpi+pi/2)时,取值是不为无穷的,而且一直在波动。因此不属于无穷间断点。那当然也就是振荡间断点咯…

这里总结一下原函数存在法则:可去、跳跃、无穷三种间断点没有原函数,振荡间断点可能有原函数,如果导函数存在振荡间断点,则可能存在原函数。

3.做题方法

Step:

  1. 找到函数f(x)在定义域内无定义的点
  2. 找“疑似点”,比如分段函数,绝对值函数端点,并求出该处的极限值,若极限不存在,则该点必为间断点
  3. 求间断点处的左右极限,并结合间断点定义,判断是哪种类型的间断点

此种方法的好处在于“没有多余计算”,因为在第一步的过程中,你已经过滤掉了一些类型的间断点了,过滤后剩下的无定义点和“疑似点”都是只是差左右极限未求,在第二步统一求出,即可判断出间断点的类型。


二、反三角函数积分?

1.一般思路

在这里插入图片描述

2.公式

  • 公式推导
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
  • 公式总结
    在这里插入图片描述

三、原函数存在与定积分存在?

原函数存在与定积分存在的区别

首先从性质来看,定积分是fx的曲线下面积,也就是一个数值,而原函数是一个函数,一个函数存在与否和一个数值是否存在完全就是两码事儿,但是本质上却有一定的联系,建立在某种条件成立的前提下:

  1. 原函数存在定理:
  • fx在区间上连续,必有原函数;
  • fx在区间上存在第一类间断点,必没有原函数;
  • 初等函数在区间上连续,故初等函数在其定义区间一定存在原函数;
  1. 定积分存在定理:
  • fx在闭区间内连续,则定积分存在;
  • fx在闭区间内有界,且只有有限个间断点,则定积分存在;
  • fx在闭区间上单调,则定积分存在;
  1. 变限积分定理:
  • 无论fx是否连续,Fx都连续,且过定点(a,0),叫做变限积分函数
  • 当且仅当fx连续,Fx才叫原函数,F’x=fx;
  • 若c是fx的跳跃间断点,则Fx在x=c处不可导;若c是fx的可去间断点,则Fx在x=c处可导,但导数不为fc
  • 若函数fx在闭区间上连续,则变限积分函数在此区间内可导,且导函数等于fx
    (注:变上限积分只是一种抽象的函数,并不是基本初等函数类型的函数,但也是属于原函数的一种,而且用它可以表示出任何被积函数的原函数,即使有些被积函数并不存在形式为基本初等函数的原函数。)

所以由以上我们可以得到这二者之间的联系。

fx在闭区间连续时,原函数存在,定积分存在,且变上限积分函数是fx的一个原函数,也就是变限积分函数求导可以得到fx

也就是从这个结论中我们可以总结出求原函数的方法:

设原函数为变上限积分函数,当被积函数在闭区间内有界且有有限个间断点时,则fx可积,原函数不存在,但变上限积分函数连续;

函数fx在闭区间上可积,fx不一定连续;fx在闭区间连续,一定可积

fx在闭区间连续,则变上限定积分函数可导;,fx可积,变限积分函数不一定可导,但其在此区间一定连续

可积和原函数存在完全两个概念。可积但原函数不一定存在,原函数存在不一定可积,二者没有必然关系。

可积的充分条件:函数连续或函数在区间上有界且有有限个间断点。或函数在区间单调。

原函数存在的充分条件:连续。另外函数含有第一类间断点,那么不存在原函数,含无穷型的间断点也不存在原函数。

问题一:否,若f(x)存在原函数F(x),那么F’(x)=f(x),若f(x)在x=c是跳跃间断点,必然,f(c 0)≠f(c-0),这就导致F’(c 0)≠F’(c-0),故F’©不存在,与F’©=f©矛盾。可去间断点F’(c 0)=F’(c-0),但是显然他们都不等于F’©[例如F’(c 0)=f(c 0)≠f©],事实上,函数存在第一类间断点,必然没有原函数。

问题二:是。有限个间断点不影响可积性,若存在原函数F‘(x)=f(x),根据函数的性质,可导函数必连续,可知F(x)连续。

在这里插入图片描述

扩展资料:

原函数存在定理为:若f(x)在[a,b]上连续,则必存在原函数。此条件为充分条件,而非必要条件。即若fx)存在原函数,不能推出f(x)在[a,b]上连续。

由于初等函数在有定义的区间上都是连续的,故初等在其定义区间上都有原函数。需要注意的是初等函数的导数是一定是初等函数,初等函数的原函数不一定是初等函数。

设F’(x)=f(x),f(x)在x=x0处不连续,则x0必为第二类间断点(对于考研数学,只能是第二类振荡间断点),而非第一类间断点或第二类无穷间断点。

当f(x)存在第二类振荡间断点时,不能确定是否存在原函数,这种情况下结论与f(x)的表达式有关。

原函数存在的三个结论:

如果f(x)连续,则一定存在原函数;

如果f(x)不连续,有第一类可去、跳跃间断点或第二类无穷间断点,那么包含此间断点的区间内,一定不存在原函数;

如果f(x)不连续,有第二类振荡间断点,那么包含此间断点的区间内,原函数可能存在,也可能不存在。

函数乘积的可积性:

设函数 在区间 上可积,那么乘积 也可积。

函数绝对值的可积性:

如果函数 在区间 上可积,那么它的绝对值函数 也可积,并且满足:

  • 可导、可微、可积、连续、有界、极限存在的关系
    在这里插入图片描述

函数在某一点连续必定在该点有极限(且这个极限就是该点的函数值)但反过来不一定,因为f(x)在某一点有极限时,在该点并不一点有定义,所以不一定连续。
函数在某一点连续也必定意味着函数在该点附近的任意一个有定义的去心邻域内有界,反过来不一定,即有界不一定连续。
函数在某个区间内连续则必定在该区间上可积,但反过来不一定,例如著名的黎曼函数,在[0,1]上的所有有理点(除了0)都不连续,但它确是可积的。
可积的充分条件:函数有界;在该区间上连续;有有限个间断点。可积一般就是指:可积函数;如果f(x)在【a,b】上的定积分存在,我们就说f(x)在【a,b】上可积,可积函数一定是有界的。


总结

  • 1
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值