高数 | 定理及性质证明 | 开 闭区间上连续函数的性质及证明

一、有界性定理

函数的上界和下界的绝对值不一定相等。

函数在某区间上不是有界就是无界,二者必属其一;

要证明f(x)在X上有界,必须找到一个M>0,使任意x属于X都有 |f(x)|<=M;要证明f(x)在X上无界,只需要找到一个数列{xn}存在于X,使f(xn) n趋于∞,f(xn)趋于∞

外界函数有界,复合函数必有界。

函数有界,从几何意义看就是图形被框定在两条平行于x轴的直线之间,不会跑出去;从代数意义看,就是函数值不会趋于正无穷大,也不会趋于负无穷大;当时并不意味着有极限,比如y=sinx,被框定在y=±1这两条直线之间,x→∞时,sinx游走于[-1,+1]之间。


 二、最大最小值定理


 三、零点存在定理

 四、介值定理

五、反函数连续性定理

 证明见闭区间上连续函数性质的证明 - 道客巴巴

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

西皮呦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值