高数 | 定理及性质证明 | 开 闭区间上连续函数的性质及证明

一、有界性定理

函数的上界和下界的绝对值不一定相等。

函数在某区间上不是有界就是无界,二者必属其一;

要证明f(x)在X上有界,必须找到一个M>0,使任意x属于X都有 |f(x)|<=M;要证明f(x)在X上无界,只需要找到一个数列{xn}存在于X,使f(xn) n趋于∞,f(xn)趋于∞

外界函数有界,复合函数必有界。

函数有界,从几何意义看就是图形被框定在两条平行于x轴的直线之间,不会跑出去;从代数意义看,就是函数值不会趋于正无穷大,也不会趋于负无穷大;当时并不意味着有极限,比如y=sinx,被框定在y=±1这两条直线之间,x→∞时,sinx游走于[-1,+1]之间。


 二、最大最小值定理


 三、零点存在定理

 四、介值定理

五、反函数连续性定理

 证明见闭区间上连续函数性质的证明 - 道客巴巴

闭区间连续函数的最大最小值定理是实分析和高等数学中的一个重要结论。它表明,如果函数在闭区间[a, b]上连续,那么它必定在该区间上取得最大值和最小值。这个定理证明是建立在闭区间连续函数性质之上的,包括定义域的完备性和函数的有界性及单调性。 参考资源链接:[专升本高数学习笔记:第一章 函数,极限与连续性解析](https://wenku.csdn.net/doc/12hopj6sfe?spm=1055.2569.3001.10343) 证明的基本思路可以分为以下几个步骤: 首先,我们需要明确闭区间的定义域概念。在闭区间[a, b]上,函数f(x)的定义域是完备的,这意味着区间内的任意一点都有函数值与之对应,且区间端点a和b都是函数的定义点。 其次,利用函数的有界性,我们知道在闭区间[a, b]上,连续函数f(x)必定是上有界的。也就是说,存在一个实数M,使得对于所有x属于[a, b],有f(x) ≤ M成立;同样,也存在一个实数m,使得对于所有x属于[a, b],有f(x) ≥ m成立。 然后,根据函数的单调性(如果函数在闭区间[a, b]上单调递增或递减),我们可以知道函数值会随着自变量的增加或减少在[m, M]的范围内变化。如果函数不是单调的,我们可以通过定义域的完备性将其分为若干单调子区间,对每个子区间分别应用单调函数的性质。 最后,由于函数在闭区间[a, b]上连续,根据连续性的性质,函数值会在定义域内实现从m到M的过渡,确保在某一点f(c)取到最大值M,在另一点f(d)取到最小值m。这一点是根据闭区间连续函数的介值定理来确认的,即如果函数在闭区间[a, b]上连续,那么它将取到介于任意两个函数值之间的所有值。 综上所述,闭区间连续函数的最大最小值定理证明依赖于函数的连续性、定义域的完备性和函数的有界性等基本性质。掌握这些概念对于理解和运用高等数学中的相关定理至关重要。如果想要更深入地了解这一主题,可以参考《专升本高数学习笔记:第一章 函数,极限与连续性解析》。这份资料详细地讲解了函数、极限和连续性的各种概念和定理,并且提供了实例和练习题,可以帮助学习者更好地理解和掌握这些基础概念。 参考资源链接:[专升本高数学习笔记:第一章 函数,极限与连续性解析](https://wenku.csdn.net/doc/12hopj6sfe?spm=1055.2569.3001.10343)
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

西皮呦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值