一、有界性定理
函数的上界和下界的绝对值不一定相等。
函数在某区间上不是有界就是无界,二者必属其一;
要证明f(x)在X上有界,必须找到一个M>0,使任意x属于X都有 |f(x)|<=M;要证明f(x)在X上无界,只需要找到一个数列{xn}存在于X,使f(xn) n趋于∞,f(xn)趋于∞
外界函数有界,复合函数必有界。
函数有界,从几何意义看就是图形被框定在两条平行于x轴的直线之间,不会跑出去;从代数意义看,就是函数值不会趋于正无穷大,也不会趋于负无穷大;当时并不意味着有极限,比如y=sinx,被框定在y=±1这两条直线之间,x→∞时,sinx游走于[-1,+1]之间。