定理:设u=u(x,y)u=u(x,y)u=u(x,y)及v=v(x,y)v=v(x,y)v=v(x,y)在点(x,y)(x,y)(x,y)具有对xxx及对yyy的偏导数,函数z=f(u,v)z=f(u,v)z=f(u,v)在对应点(u,v)(u,v)(u,v)具有连续偏导数,那么复合函数z=f[u(x,y),v(x,y)]z=f[u(x,y),v(x,y)]z=f[u(x,y),v(x,y)]在点(x,y)(x,y)(x,y)的两个偏导数都存在,且有
dzdx=∂z∂u∂u∂x+∂z∂v∂v∂x,dzdy