【高等数学基础进阶】多元函数微分学-多元函数微分法

本文详细探讨了多元函数微分学中的复合函数微分法和隐函数微分法,包括全微分形式的不变性和隐函数的偏导数。通过多个常考题型与典型例题,阐述了如何求解复合函数的偏导数、全微分,并介绍了如何利用微分形式不变性简化计算。同时,文章提供了具体步骤和解题技巧,适合高等数学学习者参考。
摘要由CSDN通过智能技术生成

一、复合函数微分法

定理:设 u = u ( x , y ) u=u(x,y) u=u(x,y) v = v ( x , y ) v=v(x,y) v=v(x,y)在点 ( x , y ) (x,y) (x,y)具有对 x x x及对 y y y的偏导数,函数 z = f ( u , v ) z=f(u,v) z=f(u,v)在对应点 ( u , v ) (u,v) (u,v)具有连续偏导数,那么复合函数 z = f [ u ( x , y ) , v ( x , y ) ] z=f[u(x,y),v(x,y)] z=f[u(x,y),v(x,y)]在点 ( x , y ) (x,y) (x,y)的两个偏导数都存在,且有
d z d x = ∂ z ∂ u ∂ u ∂ x + ∂ z ∂ v ∂ v ∂ x , d z d y = ∂ z ∂ u ∂ u ∂ y + ∂ z ∂ v ∂ v ∂ y \begin{aligned}\frac{dz}{dx}=\frac{\partial z}{\partial u}\frac{\partial u}{\partial x}+\frac{\partial z}{\partial v}\frac{\partial v}{\partial x},\frac{dz}{dy}=\frac{\partial z}{\partial u}\frac{\partial u}{\partial y}+\frac{\partial z}{\partial v}\frac{\partial v}{\partial y}\end{aligned} dxdz=uzxu+vzxv,dydz=uzyu+vzyv

这里
这里
z
u
v
x
y
x
y

例如该式 z = f [ u ( x , y ) , v ( x , y ) ] z=f[u(x,y),v(x,y)] z=f[u(x,y),v(x,y)],画出树形图,做对 x x x的偏导,树形图底部有几个 x x x,就有几项(最底下两个圆的 x x x);连接到某个 x x x有几条线,该式就有几个导数(标有这里的两条线表示该项有两个导数组成,即 d z d y d u d x \begin{aligned} \frac{dz}{dy} \frac{du}{dx}\end{aligned} dydzdxdu

全微分形式的不变性

设函数 z = f ( u , v ) , u = u ( x , y ) , v = v ( x , y ) z=f(u,v),u=u(x,y),v=v(x,y) z=f(u,v),u=u(x,y),v=v(x,y)都有连续的一阶偏导数,则复合函数 z = f [ u ( x , y ) , v ( x , y ) ] z=f[u(x,y),v(x,y)] z=f[u(x,y),v(x,y)]的全微分
d z = ∂ z ∂ x d x + ∂ z ∂ y y = ( ∂ z ∂ u ∂ u ∂ x + ∂ z ∂ v ∂ v ∂ x ) d x + ( ∂ z ∂ u ∂ u ∂ y + ∂ z ∂ v ∂ v ∂ y ) d y = ∂ z ∂ u ( ∂ u ∂ x d x + ∂ u ∂ y d y ) + ∂ z ∂ v ( ∂ v ∂ x d x + ∂ v ∂ y d y ) = ∂ z ∂ u d u + ∂ z ∂ v d v \begin{aligned} dz&=\frac{\partial z}{\partial x}dx+\frac{\partial z}{\partial y}y\\ &=\left(\frac{\partial z}{\partial u}\frac{\partial u}{\partial x}+\frac{\partial z}{\partial v}\frac{\partial v}{\partial x}\right)dx+\left(\frac{\partial z}{\partial u}\frac{\partial u}{\partial y}+\frac{\partial z}{\partial v}\frac{\partial v}{\partial y}\right)dy\\ &=\frac{\partial z}{\partial u}\left(\frac{\partial u}{\partial x}dx+\frac{\partial u}{\partial y}dy\right)+\frac{\partial z}{\partial v}\left(\frac{\partial v}{\partial x}dx+\frac{\partial v}{\partial y}dy\right)\\ &=\frac{\partial z}{\partial u}du+\frac{\partial z}{\partial v}dv \end{aligned} dz=xzdx+yzy=(uzxu+vzxv)dx+(uzyu+vzyv)dy=uz(xudx+yudy)+vz(xvdx+yvdy)=uzdu+vzdv

二、隐函数微分法

由方程 F ( x , y ) = 0 F(x,y)=0 F(x,y)=0确定的隐函数 y = y ( x ) y=y(x) y=y(x)
y ′ = − F x ′ F y ′ y'=-\frac{F'_{x}}{F'_{y}} y=FyFx

由方程 F ( x , y , z ) = 0 F(x,y,z)=0 F(x,y,z)=0确定的隐函数 z = z ( x , y ) z=z(x,y) z=z(x,y)
F ( x , y , z ) F(x,y,z) F(x,y,z)在点 P ( x 0 , y 0 , z 0 ) P(x_{0},y_{0},z_{0}) P(x0,y0,z0)的某一邻域内有连续偏导数,且 F ( x 0 , y 0 , z 0 ) = 0 , F z ′ ( x 0 , y 0 , z 0 ) ≠ 0 F(x_{0},y_{0},z_{0})=0,F'_{z}(x_{0},y_{0},z_{0})\ne 0 F(x0,y0,z0)=0,Fz(x0,y0,z0)=0,则方程 F ( x , y , z ) = 0 F(x,y,z)=0 F(x,y,z)=0在点 ( x 0 , y 0 , z 0 ) (x_{0},y_{0},z_{0}) (x0,y0,z0)的某邻域可唯一确定一个有连续偏导数的函数 z = z ( x , y ) z=z(x,y) z=z(x,y),并有
∂ z ∂ x = − F x ′ F z ′ , ∂ z ∂ y = − F y ′ F z ′ \frac{\partial z}{\partial x}=-\frac{F'_{x}}{F'_{z}},\frac{\partial z}{\partial y}=-\frac{F'_{y}}{F'_{z}} xz=FzFx,yz=FzFy

如果 F z ′ ( x 0 , y 0 , z 0 ) ≠ 0 F'_{z}(x_{0},y_{0},z_{0})\ne 0 Fz(x0,y0,z0)=0,那么 z z z就是 x , y x,y x,y的函数,如果 F y ′ ( x 0 , y 0 , z 0 ) ≠ 0 F'_{y}(x_{0},y_{0},z_{0})\ne 0 Fy(x0,y0,z0)=0。那么 y y y就是 x , z x,z x,z的函数,其余同理

这个很重要,这里先不解释,要看的话直接看最后

常考题型与典型例题

复合函数的偏导数与全微分

例1:设函数 F ( x , y ) = ∫ 0 x y sin ⁡ t 1 + t 2 d t \begin{aligned} F(x,y)=\int_{0}^{xy}\frac{\sin t}{1+t^{2}}dt\end{aligned} F(x,y)=0xy1+t2sintdt,则 ∂ F ∂ x = ( ) \begin{aligned} \frac{\partial F}{\partial x}=()\end{aligned} xF=()

∂ F ∂ x = y sin ⁡ x y 1 + x 2 y 2 ∂ 2 F ∂ x 2 = y 2 cos ⁡ ( x y ) ( 1 + x 2 y 2 ) − 2 x y 3 sin ⁡ x y ( 1 + x 2 y 2 ) 2 ∂ 2 F ∂ x 2 ∣ x = 0 y = 2 = 4 \begin{aligned} \frac{\partial F}{\partial x}&=\frac{y \sin xy}{1+x^{2}y^{2}}\\ \frac{\partial ^{2}F}{\partial x^{2}}&=\frac{y^{2}\cos (xy)(1+x^{2}y^{2})-2xy^{3}\sin xy}{(1+x^{2}y^{2})^{2}}\\ \frac{\partial ^{2}F}{\partial x^{2}}\Big|_{\substack{x=0\\y=2}}^{}&=4 \end{aligned} xFx22Fx22F x=0y=2=1+x2y2ysinxy=(1+x2y2)2y2cos(xy)(1+x2y2)2xy3sinxy=4

由于是对 x x x偏导,因此可以将 y y y先带进去

F ( x , 2 ) = ∫ 0 2 x sin ⁡ t 1 + t 2 d t ∂ F ∂ x = 2 sin ⁡ 2 x 1 + 4 x 2 ∂ 2 F ∂ x 2 ∣ x = 0 y = 2 = F x x ( 0 , 2 ) = lim ⁡ x → 0 2 sin ⁡ 2 x x ( 1 + 4 x 2 ) = 4 \begin{aligned} F(x,2)&=\int_{0}^{2x}\frac{\sin t}{1+t^{2}}dt\\ \frac{\partial F}{\partial x}&=\frac{2\sin 2x}{1+4x^{2}}\\ \frac{\partial^{2} F}{\partial x^{2}}\Big|_{\substack{x=0\\ y=2}}^{}&=F_{xx}(0,2)=\lim\limits_{x\to0}\frac{2\sin 2x}{x(1+4x^{2})}=4 \end{aligned} F(x,2)xF

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值