1、如果已知第一项系数为0了,建议直接去掉第一项,下标加1,然后再看第二项,如果第二项系数还是为0,建议继续去掉,下标继续再加1,依次类推。
2、对幂级数逐项求导时,如果第一项是个常数项,除了对通项求导外,下标还需要再加1,如果继续求二次导,那就需要看一下一阶导第一项是否为常数项,如果是,除了对通项求导外,下标还需要再加1,依次类推;如果第一项不是常数项,只需要对通项求导,下标无需改变。
对幂级数逐项积分时,只需要对通项进行积分,下标无需改变。
除此之外,对幂级数逐项求导或积分都不会改变级数的收敛半径,但是对于收敛域端点处的收敛性是有可能改变的,逐项积分后收敛域可能会扩大,逐项求导后收敛域可能会缩小。
3、对于类似这样的幂级数,想要采用现成的级数展开公式直接写出原函数,可以先通过换元进行观察,然后就可以套公式了,此时下标会因为换元而改变。
4、求两个下标不一样的级数的和差时,需要把下标调整成一样后才能相加。