高数 | 【无穷级数】幂级数什么时候需要改变下标?

本文详细介绍了幂级数在求导和积分过程中的处理方法,包括如何处理连续的零项,以及如何保持级数的收敛半径不变。在逐项求导和积分时,需要注意对常数项的特殊处理,并指出这可能会影响级数的收敛域。此外,还提到了如何通过换元法直接写出原函数的幂级数展开,以及在处理不同下标级数的加减法时的调整策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、如果已知第一项系数为0了,建议直接去掉第一项,下标加1,然后再看第二项,如果第二项系数还是为0,建议继续去掉,下标继续再加1,依次类推。

2、对幂级数逐项求导时,如果第一项是个常数项,除了对通项求导外,下标还需要再加1,如果继续求二次导,那就需要看一下一阶导第一项是否为常数项,如果是,除了对通项求导外,下标还需要再加1,依次类推;如果第一项不是常数项,只需要对通项求导,下标无需改变。

对幂级数逐项积分时,只需要对通项进行积分,下标无需改变。

除此之外,对幂级数逐项求导或积分都不会改变级数的收敛半径,但是对于收敛域端点处的收敛性是有可能改变的,逐项积分后收敛域可能会扩大,逐项求导后收敛域可能会缩小。

3、对于类似这样的幂级数,想要采用现成的级数展开公式直接写出原函数,可以先通过换元进行观察,然后就可以套公式了,此时下标会因为换元而改变。

4、求两个下标不一样的级数的和差时,需要把下标调整成一样后才能相加。

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

西皮呦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值