第七讲 幂级数的运算与和函数

一,幂级数的四则运算

  • 设幂级数\sum_{n=0}^{\infty }a_{n}x^{n}的收敛半径为R_{1},幂级数\sum_{n=0}^{\infty }b_{n}x^{n}的收敛半径为R_{2}
  • \sum_{n=0}^{\infty }a_{n}x^{n}\pm\sum_{n=0}^{\infty }b_{n}x^{n}=\sum_{n=0}^{\infty }(a_{n}\pm b_{n})x^{n},收敛域为R_{1}\cap R_{2}
  • (\sum_{n=0}^{\infty }a_{n}x^{n})\cdot (\sum_{n=0}^{\infty }b_{n}x^{n})=\sum_{n=0}^{\infty }(a_{0}b_{n}+a_{1}b_{n-1}+...+a_{n}b_{0})x^{n}

二,幂级数的连续性、导数和积分

  • 设幂级数\sum_{n=0}^{\infty }a_{n}x^{n},收敛区间为(-R,R)
  1. 则幂级数\sum_{n=0}^{\infty }a_{n}x^{n}在收敛区间(-R,R)内连续
  2. 则幂级数\sum_{n=0}^{\infty }a_{n}x^{n}在收敛区间(-R,R)内有各阶导数,并且可以逐项求导:{(\sum_{n=0}^{\infty }a_{n}x^{n})}'=\sum_{n=0}^{\infty }{(a_{n}x^{n})}',收敛区间不变但收敛域可能改变
  3. 则幂级数\sum_{n=0}^{\infty }a_{n}x^{n}在收敛区间(-R,R)内可积,并且可以逐项积分:\int_{0}^{x}\sum_{n=0}^{\infty }a_{n}x^{n}dx=\sum_{n=0}^{\infty }\int_{0}^{x}a_{n}x^{n}dx,收敛区间不变但收敛域可能改变

三,求幂级数的和函数

  • 思路:通过对幂级数的和函数求导或积分,将幂级数化为等比级数后,再用相反的运算得到原函数的和函数
  • 等比级数的和函数\sum_{n=0}^{\infty }x^{n}=\frac{1}{1-x},首项/(1-公比),-1< x< 1

四,例题1,求\sum_{n=1}^{\infty }nx^{n-1}的和函数

  • 求定积分\int_{0}^{x}\sum_{n=1}^{\infty }nx^{n-1}dx=\sum_{n=1}^{\infty }\int_{0}^{x}nx^{n-1}dx=\sum_{n=1}^{\infty }x^{n}=\frac{1}{1+x}
  • 求导{(\frac{1}{1+x})}'=\frac{1}{(1-x)^{2}}
  • \sum_{n=1}^{\infty }nx^{n-1}=\frac{1}{(1-x)^{2}}

五,例题2,求\sum_{n=0}^{\infty }(-1)^{n}\frac{x^{n+1}}{n+1}的和函数

  • 求导{(\sum_{n=0}^{\infty }(-1)^{n}\frac{x^{n+1}}{n+1})}'=\sum_{n=0}^{\infty }(-1)^{n}{(\frac{x^{n+1}}{n+1})}'=\sum_{n=0}^{\infty }(-1)^{n}x^{n}=\frac{1}{1+x}
  • 求定积分\int_{0}^{x}\frac{1}{1+x}dx=ln(1+x)
  • \sum_{n=0}^{\infty }(-1)^{n}\frac{x^{n+1}}{n+1}=ln(1+x)

六,例题3,求\sum_{n=1}^{\infty }\frac{n(n+1)}{2^{n}}的和

  • \sum_{n=1}^{\infty }\frac{n(n+1)}{2^{n}}=\sum_{n=1}^{\infty }n(n+1)(\frac{1}{2})^{n}
  • 令幂级数为\sum_{n=1}^{\infty }n(n+1)x^{n}
  • \sum_{n=1}^{\infty }n(n+1)x^{n}=x\sum_{n=1}^{\infty }n(n+1)x^{n-1}=x\sum_{n=1}^{\infty }(n+1){(x^{n})}'=x\sum_{n=1}^{\infty }{(x^{n+1})}''=x{(\sum_{n=1}^{\infty }x^{n+1})}''=x{(\frac{x^{2}}{1-x})}''=\frac{2x}{(1-x)^{3}}
  • x=\frac{1}{2}代入幂级数得:\sum_{n=1}^{\infty }n(n+1)(\frac{1}{2})^{n}=\frac{2\cdot \frac{1}{2}}{(1-\frac{1}{2})^{3}}=8

七,例题4,如图

  • 先解微分方程
  • 再求级数的和函数

 

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值