全球掀起 DeepSeek 复现狂潮,一文汇总!

转载自 | 新智元、量子位

因为 V3 版本开源模型的发布,DeepSeek 又火了一把,而且这一次,是外网刷屏。

全球复现DeepSeek的一波狂潮来了!

正如LeCun所言:「这一次,正是开源对闭源的胜利!」

0a88e231934e1bf2f260e0115808d78b.png

在没有顶级芯片的情况下,以极低成本芯片训出突破性模型的DeepSeek,或将威胁到美国的AI霸权。

大模型比拼的不再是动辄千万亿美元的算力战。

OpenAI、Meta、谷歌这些大公司引以为傲的技术优势和高估值将会瓦解,英伟达的股价将开始动摇。

种种这些观点和讨论,让人不禁怀疑:数百亿美元支出,对这个行业真的必要吗?甚至有人说,中国量化基金的一群天才,将导致纳斯达克崩盘。

从此,大模型时代很可能会进入一个分水岭:超强性能的模型不再独属于算力巨头,而是属于每个人。

以下项目地址汇总:

DeepSeek-R1:

https://github.com/deepseek-ai/DeepSeek-R1

HuggingFace:

https://github.com/huggingface/open-r1

伯克利团队:

https://github.com/Jiayi-Pan/TinyZero

港科大团队:

https://github.com/hkust-nlp/simpleRL-reason

Open R1:DeepSeek-R1全开源复现?

今天,HuggingFace团队官宣复刻DeepSeek R1所有pipeline。

复刻完成后,所有的训练数据、训练脚本等等,将全部开源。

cce4568e753263c332fd51aeecc64f06.png

这个项目叫做Open R1,当前还在进行中。截止目前,星标冲破3.4k,斩获255个fork。

db21ad23ec0ec2e7cb9a6d93ff6beed1.png

项目地址:https://github.com/huggingface/open-r1

不过话说回来,DeepSeek-R1本身就是开源的,HuggingFace搞这么个“Open R1”项目,又是为何?

官方在项目页中做了解释:

这个项目的目的是构建R1 pipeline中缺失的部分,以便所有人都能在此之上复制和构建R1。

HuggingFace表示,将以DeepSeek-R1的技术报告为指导,分3个步骤完成这个项目:

  • 第1步:用DeepSeek-R1蒸馏高质量语料库,来复制R1-Distill模型。

  • 第2步:复制DeepSeek用来构建R1-Zero的纯强化学习(RL)pipeline。这可能涉及为数学、推理和代码整理新的大规模数据集。

  • 第3步:通过多阶段训练,从基础模型过渡到RL版本。

ca0924a272348469c16c5bf9cc8ebc53.png

结合DeepSeek的官方技术报告来看,也就是说,Open R1项目首先要实现的,是用R1数据蒸馏小模型,看看效果是不是像DeepSeek说的那么好:

DeepSeek开源了6个用R1蒸馏的小模型,其中蒸馏版Qwen-1.5甚至能在部分任务上超过GPT-4o。

8db0d7a481e2646ec0369da983365e1c.png

接下来,就是按照DeepSeek所说,不用SFT,纯靠RL调教出R1-Zero,再在R1-Zero的基础上复刻出性能逼近o1的R1模型。

其中多阶段训练是指,R1技术报告提到,DeepSeek-R1训练过程中引入了一个多阶段训练流程,具体包括以下4个阶段:

  • 冷启动

用数千个长思维链(CoT)样本对基础模型进行监督微调(SFT),为模型提供初始的推理能力

  • 面向推理的强化学习

在第一个SFT阶段的基础之上,用和训练R1-Zero相同的大规模强化学习方法,进一步提升模型的推理能力,特别是应对编程、数学、科学和逻辑推理任务的能力。

  • 拒绝采样和监督微调

再次使用监督微调,提升模型的非推理能力,如事实知识、对话能力等。

  • 针对所有场景的强化学习

这次强化学习的重点是让模型行为与人类偏好保持一致,提升模型的可用性和安全性。

目前,在GitHub仓库中,已经可以看到这几个文件:

  • GRPO实现

  • 训练和评估代码

  • 合成数据生成器

1b03a5828214eb6bd9019ec196cbe4a5.png

伯克利团队30美元成本复刻 R1-Zero?

来自UC伯克利博士生潘家怡和另两位研究人员,在CountDown游戏中复现了DeepSeek R1-Zero。

他们表示,结果相当出色!

实验中,团队验证了通过强化学习RL,3B的基础语言模型也能够自我验证和搜索。

更令人兴奋的是,成本不到30美金(约217元),就可以亲眼见证「啊哈」时刻。

5aea5e29f24e3b5a0446a30ace9a5a9f.png

这个项目叫做TinyZero,采用了R1-Zero算法——给定一个基础语言模型、提示和真实奖励信号,运行强化学习。

然后,团队将其应用在CountDown游戏中(这是一个玩家使用基础算术运算,将数字组合以达到目标数字的游戏)。

模型从最初的简单输出开始,逐步进化出自我纠正和搜索的策略。

在以下示例中,模型提出了解决方案,自我验证,并反复纠正,直到解决问题为止。

cae31743fd89d9fa95702e0b32795ad9.png

在消融实验中,研究人员运行了Qwen-2.5-Base(0.5B、1.5B、3B、7B四种参数规模)。

结果发现,0.5B模型仅仅是猜测一个解决方案然后停止。而从1.5B开始,模型学会了搜索、自我验证和修正其解决方案,从而能够获得更高的分数。

他们认为,在这个过程,基础模型的参数规模是决定性能的关键。

1d823d9f89cf218dcceb460c65079c0b.png

他们还验证了,额外的指令微调(SFT)并非是必要的,这也印证了R1-Zero的设计决策。

f23a7653e27046ebed9d5ae5a1950fd7.png

这是首个验证LLM推理能力的实现可以纯粹通过RL,无需监督微调的开源研究

基础模型和指令模型两者区别:

  • 指令模型运行速度快,但最终表现与基础模型相当

  • 指令输出的模型更具结构性和可读性

6ae984afb7dd27b4d94df46a5f383048.png

此外,他们还发现,具体的RL算法并不重要。PPO、GRPO、PRIME这些算法中,长思维链(Long CoT)都能够涌现,且带来不错的性能表现。

b4ecc50f042ec6d786ba6e3a950233ec.png

而且,模型在推理行为中非常依赖于具体的任务:

  • 对于Countdow任务,模型学习进行搜索和自我验证

  • 对于数字乘法任务,模型反而学习使用分布规则分解问题,并逐步解决

6aeb9accdeadfbfae5a9500f114883ea.png

苹果机器学习科学家Yizhe Zhang对此表示,太酷了,小到1.5B的模型,也能通过RL涌现出自我验证的能力。

5e0430c03e9e740138f387e169ad1ef7.png

港科大团队使用8K样本完成7B模型复刻

港科大助理教授何俊贤的团队(共同一作黄裕振、Weihao Zeng),只用了8K个样本,就在7B模型上复刻出了DeepSeek-R1-Zero和DeepSeek-R1的训练。

结果令人惊喜——模型在复杂的数学推理上取得了十分强劲结果。

a2ea6c6b17d6f2a82918cba7f5dc2c25.png

b5582948c5dac748cb2e90904007bd56.png

项目地址:https://github.com/hkust-nlp/simpleRL-reason

他们以Qwen2.5-Math-7B(基础模型)为起点,直接对其进行强化学习。

整个过程中,没有进行监督微调(SFT),也没有使用奖励模型。

最终,模型在AIME基准上实现了33.3%的准确率,在AMC上为62.5%,在MATH上为77.2%。

这一表现不仅超越了Qwen2.5-Math-7B-Instruct,并且还可以和使用超过50倍数据量和更复杂组件的PRIME和rStar-MATH相媲美!

388af86852f3924d2a1f0f9f68488d44.png

111f5067ea286b1b34f66476c8cc10a9.png

其中,Qwen2.5-7B-SimpleRL-Zero是在Qwen2.5-Math-7B基础模型上仅使用纯PPO方法训练的,仅采用了MATH数据集中的8K样本。

Qwen2.5-7B-SimpleRL则首先通过Long CoT监督微调(SFT)作为冷启动,然后再进行强化学习。

在这两种方法中,团队都只使用了相同的8K MATH样本,仅此而已。

大概在第44步的时候,「啊哈时刻」出现了!模型的响应中,出现了自我反思。

59e9be00abdcaaed207ffa8fa05436ab.png

并且,在这个过程中,模型还显现了更长的CoT推理能力和自我反思能力。

f131c7b7f43bb2b30a1cd898e79657d6.jpeg

在博客中,研究者详细剖析了实验设置,以及在这个强化学习训练过程中所观察到的现象,例如长链式思考(CoT)和自我反思机制的自发形成。

与DeepSeek R1类似,研究者的强化学习方案极其简单,没有使用奖励模型或MCTS(蒙特卡洛树搜索)类技术。

他们使用的是PPO算法,并采用基于规则的奖励函数,根据生成输出的格式和正确性分配奖励:

  • 如果输出以指定格式提供最终答案且正确,获得+1的奖励

  • 如果输出提供最终答案但不正确,奖励设为-0.5

  • 如果输出未能提供最终答案,奖励设为-1

该实现基于OpenRLHF。初步试验表明,这个奖励函数有助于策略模型快速收敛,产生符合期望格式的输出。

第一部分:SimpleRL-Zero(从头开始的强化学习)

接下来,研究者为我们分享了训练过程动态分析和一些有趣的涌现模式。

训练过程动态分析

如下所示,所有基准测试的准确率在训练过程中都在稳步提高,而输出长度则呈现先减少后逐渐增加的趋势。

经过进一步调查,研究者发现,Qwen2.5-Math-7B基础模型在初始阶段倾向于生成大量代码,这可能源于模型原始训练数据的分布特征。

输出长度的首次下降,是因为强化学习训练逐渐消除了这种代码生成模式,转而学会使用自然语言进行推理。

随后,生成长度开始再次增加,此时出现了自我反思机制。

d5ac00e4ebbb0d62f7f7fcad435de71b.png

训练奖励和输出长度

007e024d8e6e0f3cf56c84da4b2e115f.png

基准测试准确率(pass@1)和输出长度

自我反思机制的涌现

在训练到第 40 步左右时,研究者观察到:模型开始形成自我反思模式,这正是DeepSeek-R1论文中所描述的「aha moment」(顿悟时刻)。

7af9aac42edb48ad45c17acf5abdcc4b.png

第二部分:SimpleRL(基于模仿预热的强化学习)

如前所述,研究者在进行强化学习之前,先进行了long CoT SFT预热,使用了8,000个从QwQ-32B-Preview中提取的MATH示例响应作为SFT数据集。

这种冷启动的潜在优势在于:模型在开始强化学习时已具备long CoT思维模式和自我反思能力,从而可能在强化学习阶段实现更快更好的学习效果。

828472dc2612c0060e485d5746997329.png

与RL训练前的模型(Qwen2.5-Math-7B-Base + 8K QwQ知识蒸馏版本)相比,Qwen2.5-7B-SimpleRL的平均性能显著提升了6.9个百分点。

此外,Qwen2.5-7B-SimpleRL不仅持续优于Eurus-2-7B-PRIME,还在5个基准测试中的3个上超越了Qwen2.5-7B-SimpleRL-Zero。

训练过程分析

3415179e3d1f357bbbc78388729f003a.png

训练奖励和输出长度

4fd9145a82c207490df0bbb0b147eb1c.png

基准测试准确率(pass@1)和输出长度

Qwen2.5-SimpleRL的训练动态表现与Qwen2.5-SimpleRL-Zero相似。

有趣的是,尽管研究者先进行了long CoT SFT,但在强化学习初期仍然观察到输出长度减少的现象。

他们推测,这可能是因为从QwQ提取的推理模式不适合小型策略模型,或超出了其能力范围。

因此,模型选择放弃这种模式,转而自主发展新的长链式推理方式。

最后,研究者用达芬奇的一句话,对这项研究做了总结——

简约,便是最终极的精致。

8f42f6bbbfa5b13a10ecd6bda74399d6.png

从斯坦福到MIT,R1成为首选

一个副业项目,让全世界科技大厂为之惶恐。

DeepSeek这波成功,也成为业界的神话,网友最新截图显示,这款应用已经在APP Store「效率」应用榜单中挤进前三。

3553b5888a3430b5642e27b9d2269928.png

在Hugging Face中,R1下载量直接登顶,另外3个模型也霸占着热榜。

becef072ee9d53a6fc2b9e07a1f27406.png

a16z合伙人Anjney Midha称,一夜之间,从斯坦福到MIT,DeepSeek R1已经成为美国顶尖高校研究人员「首选模型」。

a5223fe9b02b64d59345c2a1c5166ab5.png

还有研究人员表示,DeepSeek基本上取代了我用ChatGPT的需求。

9f7742780f44589b0abf6627aeb54397.png

中国AI,这一次真的震撼了世界。

参考资料:

https://x.com/junxian_he/status/1883183099787571519

https://x.com/jiayi_pirate/status/1882839370505621655

推荐阅读

欢迎大家加入DLer-计算机视觉技术交流群!

大家好,群里会第一时间发布计算机视觉方向的前沿论文解读和交流分享,主要方向有:图像分类、Transformer、目标检测、目标跟踪、点云与语义分割、GAN、超分辨率、人脸检测与识别、动作行为与时空运动、模型压缩和量化剪枝、迁移学习、人体姿态估计等内容。

进群请备注:研究方向+学校/公司+昵称(如图像分类+上交+小明)

29931391acbcdf5028c20172fa2cb240.jpeg

👆 长按识别,邀请您进群!

957548486b14d5f8764c05291ec36279.gif

### 复现 DeepSeek R1 的方法 为了成功复现 DeepSeek R1,需遵循特定的方法论和实践指南。以下是实现这一目标的关键要素: #### 准备环境 确保拥有合适的开发环境对于任何项目的复现有决定性影响。针对 DeepSeek R1,建议采用 Python 编程语言及其相关库构建运行平台[^2]。 #### 获取源码资源 访问官方发布的 GitHub 仓库或其他公开渠道下载项目源代码。特别注意的是,复旦大学团队已开放了名为 `DeepSeek-R1-zero` 的版本,该版本仅通过约200行代码即实现了模型的核心特性——“Aha Moment”的自发涌现现象[^3]。 #### 配置依赖项 安装必要的软件包和工具集以支持程序执行。这通常涉及配置虚拟环境并利用 pip 工具安装所需的 Python 库文件。具体到此案例中,可能需要 TensorFlow 或 PyTorch 这样的深度学习框架作为基础支撑结构之一。 #### 数据预处理 准备高质量的数据集用于训练过程至关重要。根据论文描述或文档说明调整数据格式使之适应算法需求;同时考虑实施标准化、归一化等操作提高后续计算效率与准确性[^1]。 #### 训练模型 启动训练流程之前仔细阅读作者提供的指导手册了解参数设定原则以及优化策略的选择依据。在此基础上编写脚本调用 API 接口完成迭代更新直至收敛获得满意的结果表现形式。 #### 测试评估 最后一步是对生成后的模型进行全面评测验证其性能指标是否达到预期水平。对比原始研究中的基准测试分数确认改进之处,并记录下观察所得以便进一步分析探讨潜在提升空间。 ```python import torch from transformers import AutoModelForSequenceClassification, Trainer, TrainingArguments def train_model(): model = AutoModelForSequenceClassification.from_pretrained('bert-base-uncased') training_args = TrainingArguments( output_dir='./results', num_train_epochs=3, per_device_train_batch_size=8, per_device_eval_batch_size=8, warmup_steps=500, weight_decay=0.01, logging_dir='./logs', ) trainer = Trainer( model=model, args=training_args, train_dataset=train_dataset, eval_dataset=val_dataset ) trainer.train() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值