python读入图片,可视化展示图片

本文介绍了使用OpenCV(cv2)和matplotlib(plt)库读取和显示图片的不同之处,包括cv2.imread()读取的图片为BGR格式,plt.imread()为RGB格式,以及中文路径问题。提供了使用cv2读取并转换为RGB后用plt展示的示例,强调了cv2.waitKey(0)在显示图片时的重要性。同时,还展示了如何获取和打印图片的基本信息,如尺寸、通道数和像素值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

可以使用cv2.imread()读入  cv2.imshow()展示

或者使用plt.imread()读入   plt.imshow()展示

也可以混合使用:cv2.imread()读入     plt.imshow()展示

或者plt.imread()读入, cv2.imshow()展示

 但是这里有个问题,虽然plt.imread()和cv2.imread()都能读取图片,但是有一些区别:

(1)cv2.imread()中图片路径中不能出现中文,中文读取不出来

(2)cv2.imread()读出来的是BGR,plt.imread()读出来的是RGB,所以读出来的图很可能不一样,

matplot.image.imread()读出来的是RGB,cv2读出来的可能发蓝:

               用plt.read()读出来的                                 用cv2.read()读出来的

 此外稍微了解一下就行,还有PIL,skimage的方式读取,展示图片,不用掌握

1.只使用cv库

输入的是一张图片的文件路径

注意:一定要有最后的两句代码(cv2.waitKey(0)),否则展示窗口会一闪而过

import cv2

path="/home/ouyang/ffpmeg/frame/frame0001.png"
image = cv2.imread(path)


cv2.imshow("Image", image)


cv2.waitKey(0)
cv2.destroyAllWindows()

2只使用plt库

#1:读入图片
img=plt.imread("./img/cat1.jpg")
#或者是img=cv2.imread("./img/cat1.jpg")
#又或者是#img=matplotlib.image.imread("./img/cat1.jpg")


#2:读取一些图片信息,比如图像的宽,高,通道数,最大像素值,最小像素值
print(img.shape)#(227, 286, 3)
print(img.shape[0])#图片宽度为227
print(img.shape[1])#图片高度为286
print(img.shape[2])#图片通道数为3
print(img.mean())#图片像素平均值
print(img.min(),img.max())


#3:显示图片
#这两行代码要连用才能把图片显示出来,单单一行代码是无法将图片显示出来的
plt.imshow(img)
plt.show()

 3.cv2库和plt库混合使用  使用cv2读入,使用plt展示

import cv2
import matplotlib.pyplot as plt

path="/home/ouyang/ffpmeg/frame/frame0001.png"

image = cv2.imread(path)

# 将图像从BGR格式转换为RGB格式(因为OpenCV读取图像为BGR格式,而matplotlib显示为RGB格式)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)


# 显示图像
plt.imshow(image)
plt.axis('off')  # 取消坐标轴显示
plt.show()


 

### 使用 Python 实现经纬度坐标的数据可视化 为了实现经纬度坐标的可视化,通常会采用 `geopandas` 和 `folium` 这样的库来进行地理空间数据分析和交互式地图绘制。下面介绍具体方法。 #### 准备工作 确保安装必要的包: ```bash pip install geopandas folium pandas requests ``` #### 数据准备 CSV 文件应至少包含两列用于表示地理位置的经度 (`longitude`) 和纬度 (`latitude`) 坐标。其他附加信息可以根据需求加入更多字段以便后续分析使用[^3]。 #### 加载并处理数据 读取 CSV 文件并将经纬度转换成几何对象: ```python import pandas as pd from shapely.geometry import Point # 读入csv文件 df = pd.read_csv('locations.csv') # 将经纬度转为shapely geometry point对象 df['geometry'] = df.apply(lambda row: Point(row['longitude'], row['latitude']), axis=1) # 创建GeoDataFrame gdf = gpd.GeoDataFrame(df, geometry='geometry') ``` #### 可视化设置 创建 Folium 地图实例,并将各个位置标记到地图上: ```python import folium # 初始化中心点(可选) m = folium.Map(location=[df.latitude.mean(), df.longitude.mean()], zoom_start=8) # 添加每一个地点作为圆圈标记 for idx, row in df.iterrows(): folium.CircleMarker( location=[row['latitude'], row['longitude']], radius=5, color="blue", fill=True, fill_color="red" ).add_to(m) # 输出HTML文件查看效果 m.save("map.html") ``` 上述代码片段展示了如何加载含有经纬度信息的数据集、将其转换为适合可视化的格式以及最终呈现于网页上的过程[^2]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值