李宏毅2022机器学习笔记(1)

机器学习涉及寻找函数以拟合数据,包括Regression和Classification两种主要类型。通过定义Loss函数和使用梯度下降法进行模型优化。文章还介绍了从简单的线性模型到使用sigmoid和ReLU函数构建更复杂的模型,以及深度学习中的批量梯度下降和神经网络结构。
摘要由CSDN通过智能技术生成

 什么是机器学习

机器学习可以看做是寻找一个函数。

函数的类别

根据输出结果的不同类型,机器学习的函数大致分为以下三种

1、Regression:函式输出结果为数值

2、Classification:从设定的选项中选出一个类别当做输出

机器学习的步骤

上图是机器学习训练的三个步骤

步骤1:找到一个含有未知参数的函数。

其中w和b为该函数中的未知参数,x为出入参数,y为输出参数。

步骤 2:定义一个 Loss(损失函数)

(y:模型的预测值 , \widehat{y} :实际数据)

步骤3:模型最优化

采用gradient descent(梯度下降法)

首先随机找一个w^{0},计算该点的偏导数,导数大于0则w减小,导数小于0则w增大,最后根据学习率η计算出

以上是损失函数具有一个未知数的情况,当损失函数具有多个未知数时也同理。下面是两个未知数情况下的计算

1、随机选取初始值w^{0},b^{0}

2、对损失函数进行微分计算

3、不断更新参数w和b,找到最好的参数值

步骤1:找到一个含有未知参数的函数。

线性模型太过简单,有很大的局限性,有很大的模型偏差,因此我们需要一个更复杂,更有弹性的含未知参数的函数。

  上图中红色曲线可以看做是实际情况下的函数形式,蓝色曲线为机器预测数据时所要用到的函数。

可以看出,红线第一段=第0个函数+第1个函数

红线第二段=第0个函数+第1个函数+第2个函数

红线第二段=第0个函数+第1个函数+第2个函数+第3个函数

由此可知,所有的分段性线性曲线等于一个常数加一段函数,所有曲线都可这样仅此取得

这里蓝色函数通常用sigmoid function,其函数如下图所示。

红色曲线用sigmoid function得到如下图所示的新模型函数(含有三个未知参数c,b,w)

 将上方式子写开得到如下

之后将r分别代入sigmoid function的到a

最后得到如下函数

由此我们得到了一个含有未知参数的函数

步骤 2:定义一个 Loss(损失函数)

上图损失函数中θ 表示函数的的全部变量:b, w, c。

损失函数定义中e有两种定义方法分别为MAE和MSE,下图是它们的函数式

步骤3:模型最优化

随意选取一组位置变量θ,计算gradient,更新参数, 计算平均损失函数,找出平均损失函数最小时未知参数的值。

当数据太大时,需要用到如下方法

将数据分为多个batch,将上一个batch学习得到的未知参数更新值带入到下一个batch中。

优化模型,做两次学习

将第一层的输出数据作为第二层的输入数据再次学习,如下图。

上图便是深度学习,其中神经网络由输入层,隐藏层和输出层构成,隐藏层中又包含多个神经元。

激活函数

下面我们对模型进行更多变形

将蓝色函数变为relu函数

一个sigmod可以由两个relu函数近似表示

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值