一、实验目的
1.研究RC一阶电路的零输入响应、零状态响应和全响应的规律和特点;
2.学习一阶电路时间常数的测量方法,了解电路参数对时间常数的影响;
3.掌握微分电路和积分电路的基本概念。
二、实验原理
1.RC一阶电路的零状态响应
RC一阶电路如图3-40所示,开关S在‘1’的位置,uC=0,处于零状态,当开关S合向‘2’的位置时,电源通过R向电容C充电,uC(t)称为零状态响应,
变化曲线如图3-41所示,当uC上升到0.632uS所需要的时间称为时间常数,
=RC
|
2.RC一阶电路的零输入响应
在图3-40中,开关S在‘2’的位置电路稳定后,再合向‘1’的位置时,电容C通过R放电,uC(t)称为零输入响应,
变化曲线如图3-42所示,当uC下降到所需要的时间称为时间常数,
=RC
3.测量RC一阶电路时间常数
图3-40电路的上述暂态过程很难观察,为了用普通示波器观察电路的暂态过程,需采用图3-43所示的周期性方波uS作为电路的激励信号,方波信号的周期为T,只要满足,便可在示波器的荧光屏上形成稳定的响应波形。
电阻R、电容C串联与方波发生器的输出端连接,用双踪示波器观察电容电压uC,便可观察到稳定的指数曲线,如图3-44所示,在荧光屏上测得电容电压最大值,取,与指数曲线交点对应时间t轴的x点,则根据时间t轴比例尺(扫描时间),该电路的时间常数
4.微分电路和积分电路
在方波信号uS作用在电阻R、电容C串联电路中,当满足电路时间常数远远小于方波周期T的条件时,电阻两端(输出)的电压uR与方波输入信号uS呈微分关系,
,该电路称为微分电路。当满足电路时间常数
远远大于方波周期T的条件时,电容C两端(输出)的电压uC与方波输入信号uS呈积分关系,
,该电路称为积分电路。
微分电路和积分电路的输出、输入关系如图3-45(a)、(b)所示。
三、实验内容
按照实验电路图连线,实验电路如图3-46所示,uS(t)为方波信号源,用函数信号发生器调出输出频率为f=1.25kHz,即(脉宽T1=400μs,周期为T=800μs),高电平为3V,低电平为0V的方波信号(在仿真软件中将offset设置为与幅值一样大),根据不同的RC的数值,用示波器观察、读测、记录波形和τ值,并描绘出uC(t)的波形。改变R或C的数值,观察uC(t)的波形如何变化,并记录;
图3-46
1.微分电路和积分电路
(1)积分电路:令R=10KΩ,C=XμF,和R=20KΩ,C=0.5μF用示波器观察激励uS与响应uC的变化规律。
(2)微分电路:将实验电路中的R、C元件位置互换,令R=XkΩ,C=0.1μF,和R=5kΩ,C=0.5μF用示波器观察激励uS与响应uR的变化规律。