电路理论实验报告7: RC一阶电路的响应测试

 

一、实验目的

1.研究RC一阶电路的零输入响应、零状态响应和全响应的规律和特点;

2.学习一阶电路时间常数的测量方法,了解电路参数对时间常数的影响;

3.掌握微分电路和积分电路的基本概念。

二、实验原理

1RC一阶电路的零状态响应

RC一阶电路如图3-40所示,开关S在‘1’的位置,C=0,处于零状态,当开关S合向‘2’的位置时,电源通过R向电容C充电,C()称为零状态响应,

变化曲线如图3-41所示,当C上升到0.632uS所需要的时间称为时间常数\tau,\tau=RC

2.RC一阶电路的零输入响应

在图3-40中,开关S在‘2’的位置电路稳定后,再合向‘1’的位置时,电容C通过R放电,C()称为零输入响应,

变化曲线如图3-42所示,当C下降到所需要的时间称为时间常数\tau,\tau=RC

3.测量RC一阶电路时间常数\tau

     图3-40电路的上述暂态过程很难观察,为了用普通示波器观察电路的暂态过程,需采用图3-43所示的周期性方波S作为电路的激励信号,方波信号的周期为T,只要满足,便可在示波器的荧光屏上形成稳定的响应波形。

电阻R、电容C串联与方波发生器的输出端连接,用双踪示波器观察电容电压C,便可观察到稳定的指数曲线,如图3-44所示,在荧光屏上测得电容电压最大值,取,与指数曲线交点对应时间轴的x点,则根据时间轴比例尺(扫描时间),该电路的时间常数

4.微分电路和积分电路

在方波信号S作用在电阻R、电容C串联电路中,当满足电路时间常数\tau远远小于方波周期T的条件时,电阻两端(输出)的电压R与方波输入信号S呈微分关系,,该电路称为微分电路。当满足电路时间常数\tau远远大于方波周期T的条件时,电容C两端(输出)的电压C与方波输入信号S呈积分关系,,该电路称为积分电路。

微分电路和积分电路的输出、输入关系如图3-45(a)、(b)所示。

三、实验内容

按照实验电路图连线,实验电路如图3-46所示,uS(t)为方波信号源,用函数信号发生器调出输出频率为f=1.25kHz,即(脉宽T1=400μs,周期为T=800μs),高电平为3V,低电平为0V的方波信号(在仿真软件中将offset设置为与幅值一样大),根据不同的RC的数值,用示波器观察、读测、记录波形和τ值,并描绘出uC(t)的波形。改变R或C的数值,观察uC(t)的波形如何变化,并记录;

图3-46

       1.微分电路和积分电路

(1)积分电路:令=10KΩ,=XμF,和=20KΩ,=0.5μF用示波器观察激励S与响应C的变化规律。

(2)微分电路:将实验电路中的元件位置互换,令=XkΩ,=0.1μF,和=5kΩ,=0.5μF用示波器观察激励S与响应R的变化规律。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

吐泡泡科技

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值