一、实验目的
⒈ 通过实验观察电路的串联谐振现象,加深对串联谐振电路特性的理解。
⒉ 通过实验学习测定电路的谐振频率f0,品质因数Q,并了解其意义。
3.掌握函数发生器的使用
二、实验原理
![]()
|
l.RLC串联电路(图3.10.1)的阻抗是电源角频率ω的函数,,当
时,电路处于串联谐振状态,谐振角频率为:
。显然,谐振频率仅与元件L、C的数值有关,而与电阻R和激励电源的角频率ω无关。当ω<ω0时,电路呈容性,阻抗角φ<0;当ω>ω0时电路呈感性,阻抗角φ>0。
2. 电路处于谐振状态的特性
(1)由于回路总电抗:,因此,回路阻抗
为最小值。整个回路相当于一个电阻,电源的电压与回路电流同相位。
(2)由于感抗ω0L和容抗1/ω0C相等,所以电感上的电压UL与电容上的电压UC大小相等,相位相差180º。谐振的感抗(或容抗)与电阻R之比称为品质因数Q。
在L和C为定值的条件下,Q值仅仅决定于回路电阻R的大小。
(3)在激励电压(有效值)不变的情况下,回路中的电流I=Us/R为最大值。
3.串联谐振电路的频率特性
(1)回路的响应电流与激励电源的角频率的关系称为电流的幅频特性(表明其关系的图形为串联谐振曲线),表达式为:
当电路的L和C保持不变时,改变R的大小,可以得出不同Q值时电流的幅频特性曲线(图3.10.2);显然,Q值越高,曲线越尖锐。
为了反映一般情况,通常研究电流I/I0与角频率之比ω/ω0之间的函数关系:
这里,I0为谐振时的回路响应电流。
对于Q值相同的任何RLC串联电路只有一条曲线与之对应,所以,这种曲线称为串联谐振电路的通用曲线。
图10-2画出了不同Q值下的串联谐振电路的通用曲线。显然,Q值越高,在一定的频率偏移下,电流比下降得越厉害。
图3.10.2通用谐振曲线
串联谐振电路的通用曲线可以由计算得出,也可以用实验的方法测定。
为了衡量谐振电路对不同频率的选择能力,定义通用幅频特性曲线中幅值下降至峰峰值的0.707倍时的频率范围(见图3.10.2)为相对通频带(以B表示)即:
显然,Q值越高相对通频带越窄,电路的选择性越好。
(2)激励电压和回路响应电流的相角差φ与激励源角频率ω的关系称为相频特性,它可由公式:,计算得出或由实验测定。相角φ与ω/ω0的关系称为通用相频特性。
(3)串联谐振电路中,电感电压频率特性为:
电容电压的频率特性为:
UCmax=ULmax=
UC的峰值出现在ω<ω0处,其中:
UL的峰值出现在ω>ω0处,其中:
Q值越大,出现峰值点离ω0越近。
三、实验内容
测量R=60Ω时电路的谐振频率f0
(1)本实验电路所用的电容、电感元件选自电容电感板,R使用多值电阻器,连接实验电路如图3.10.3所示。
例如,电路中取L=100mH、C=0. 1uF,R=60Ω
自行设计L,C,等参数,根据L,C配置相应的函数信号。
(2)调节函数信号发生器,使之输出正弦波,并使U1=3V( UPP),接入电路;再调节函数信号发生器的输出信号频率,观测输出电压U2的变化,找到使U2达到最大值的频率,此频率就是使电路达到谐振的谐振频率,将此频率和测量的U2和UC的值,填入表3.10.1的中间部分,然后在谐振频率之下和谐振频率之上分别选4至5个测量点,将测量的频率值和电压值填入表3.10.1中。U1、U2均应用交流毫伏表测量出。
图3.10.3
频率(KHZ) | 1192 | 1292 | 1392 | 1492 | f0=1592 | 1692 | 1792 | XXX | 1992 |
U2(V) | 0.452 | 0.640 | 1.02 | 2.13 | 3.88 | 1.59 | 0.940 | 0.672 | 0.527 |
UC(V) | 9.94 | 12.96 | XXX | 37.40 | 63.83 | 24.60 | 13.74 | 9.30 | 6.93 |
UL(V) | 5.72 | 8.76 | 15.04 | 33.73 | XXX | 28.53 | 17.88 | 13.49 | 11.14 |
四、实验报告
1)实验中怎样判断电路已经处于谐振状态?
答:电阻上的电压最大时电路谐振。
2、电感电压和电容电压相等时电路谐振。
3、线路中电流最大时电路谐振。
2)通过实验获得的谐振曲线分析电路参数对它的影响。
答:影响的是曲线的陡度,即品质因数Q,R越大,Q越低,波峰变缓.
3)怎样利用测得的数据求得电路的Q?
答:在谐振曲线峰值的0.707倍处做一直线与曲线相交,横坐标记做f1、f2,品质因数Q=f0/|f2-f1|