lstm进行多变量预测

本文深入探讨了LSTM(长短期记忆)神经网络,一种专为解决RNN长序列训练中梯度消失与爆炸问题而设计的特殊网络。相较于传统RNN,LSTM在处理更长序列时展现出了卓越性能,特别适用于时序特征提取,优于传统方法如HOG和LBP。
部署运行你感兴趣的模型镜像

LSTM长短期记忆神经网络的学习与实现

 

 

什么是LSTM?


"长短期记忆(Long short-term memory, LSTM)是一种特殊的RNN,主要是为了解决长序列训练过程中的梯度消失和梯度爆炸问题。简单来说,就是相比普通的RNN,LSTM能够在更长的序列中有更好的表现。"[1]


用LSTM提取时序特征的优越性  VS  传统的特征提取:HOG, LBP

 

 

 

 

Reference

[1] https://www.sohu.com/a/222484642_769402

 

 

 

 

 

 

 

您可能感兴趣的与本文相关的镜像

Stable-Diffusion-3.5

Stable-Diffusion-3.5

图片生成
Stable-Diffusion

Stable Diffusion 3.5 (SD 3.5) 是由 Stability AI 推出的新一代文本到图像生成模型,相比 3.0 版本,它提升了图像质量、运行速度和硬件效率

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值