独立样本t检验及其案例分析

作者简介:热爱数据分析,学习Python、Stata、SPSS等统计语言的小高同学~
个人主页小高要坚强的博客
当前专栏SPSS
本文内容:独立样本t检验及其案例分析
作者“三要”格言:要坚强、要努力、要学习


目录

一、引言

二、方法概述

三、案例分析:医学与非医学学生的捐献意愿1. 数据收集

2.操作步骤

3. t检验结果

​4. 结果解读

5. 结论与建议

6.总结


一、引言

独立样本t检验是一种常用的统计方法,旨在比较两个独立组的均值差异是否显著。本文将通过具体案例,介绍独立样本t检验的原理、步骤及其结果分析。

二、方法概述

独立样本t检验的基本假设包括:

  1. 两组数据是独立的。
  2. 数据呈正态分布。
  3. 方差齐性(可选择假定或不假定)。

三、案例分析:医学与非医学学生的捐献意愿
1. 数据收集

在本案例中,我们调查了某高校学生对捐血的意愿,并根据专业背景(医学与非医学)将其分为两组。

2.操作步骤

首先,点击分析--比较平均值---独立样本T检验,随后,需要定义组:即是否为医学专业,是为2,否为1;

点击确认

3. t检验结果

以下是独立样本t检验的结果:


4. 结果解读

方差齐性检验:F值为1.404,显著性为0.239,表明两个组的方差不存在显著差异,因此我们假定方差等同性。(如果等方差,看第一行,不等方差,看第二行),所以看第一行~
t检验结果:t(88) = 0.702,p = 0.485,说明医学与非医学学生在捐献意愿上的均值差异不显著。
平均值差异:平均值差异为0.107,95%置信区间为[-0.138, 0.289],包含0,进一步支持了没有显著差异的结论。

5. 结论与建议

本案例表明,专业背景对学生捐献意愿的影响不显著。但总的来说,独立t检验步骤已经讲述完毕了!大家可以试一试~

6.总结

独立样本t检验是研究两组间均值差异的重要工具。通过具体案例的分析,我们可以更深入地理解数据背后的故事,并为实际问题提供数据支持和决策依据。


码字艰辛,本篇内容就分享至此,如果渴望深入了解更多SPSS学习方面的应用,别忘了点击关注博主,引导你从零开始探索Python在统计分析上的奥秘。同时,对于在数据分析与SPSS旅程中感到迷茫的朋友们,欢迎浏览我的专题系列:SPSS,让我们一起努力坚强学习,共同进步吧~

### 如何使用 SPSS 进行独立样本 T 检验 #### 准备工作 为了确保能够顺利执行独立样本 T 检验,在开始之前需确认数据已经按照要求进行了预处理。这包括但不限于检查变量的测量尺度是否合适,以及确保每组的数据都已正确录入到对应的列中[^3]。 #### 执行独立样本 T 检验的操作流程 在 IBM SPSS Statistics 中启动程序后: 点击菜单栏中的 **分析** -> **比较平均值** -> **独立样本T检验...** 此时会弹出对话框,在该窗口内指定要测试的目标变量(即因变量),将其移入“检验变量(T)”列表框;接着设置分组变量,并定义各组的具体编码值以便区分不同类别下的观测对象[^2]。 #### 设置选项并运行检验 对于高级配置部分,可以依据实际需求调整置信区间百分比,默认情况下为95%。如果研究中有特殊考虑,则可适当修改此参数取值范围。另外还需注意勾选输出描述性统计量这一项,这对于后续解读结果非常有帮助[^1]。 ```spss * 下面是一段简单的SPSS语法命令用于演示如何实施上述过程 *. T-TEST GROUPS=group(0 1) /VARIABLES=value /CRITERIA=CIN(.95). ``` 以上代码片段展示了怎样利用SPSS自带脚本语言编写一段指令来自动化完成整个独立样本T检验的过程。其中`GROUPS=`后面紧跟的是用来划分两组案例所基于的那个分类变量及其可能取到的不同数值;而`VARIABLES=`则指定了参与对比计算的实际度量指标字段名。 #### 解读结果报告 当所有设定完成后按下OK按钮提交任务请求,稍作等待即可得到完整的分析报表。重点关注几个核心要素:首先是Levene's Test for Equality of Variances表格里关于方差齐性的假设检验结论;其次是根据前面提到过的方差相等情况分别查看对应行内的t值、自由度df还有双侧Sig.(p-value),以此判断原假设H₀成立与否从而得出最终的研究发现。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小高要坚强

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值