《统计学习方法》第七章支持向量机

一、写在前面

本文是《统计学习方法》第七章支持向量机的读书笔记。本笔记服务于自己备忘,不做其他用途。也希望自己能坚持下来,完成整本书的学习与记录。

二、支持向量机简介

支持向量机(support vector machines,SVM)是一种二类分类模型。它的基本模型是定义在特征空间上的间隔最大的线性分类器,间隔最大使它有别于感知机;支持向量机还包括核技巧,这使它成为实质上的非线性分类器。支持向量机的学习策略就是间隔最大化,可形式化为一个求解凸二次规划(convex quadratic programming,不怕,附录有解释)的问题,也等价于正则化的合页损失函数(后面也有解释)的最小化问题。支持向量机的学习算法是求解凸二次规划的最优化算法。

支持向量机学习方法包含构建由简至繁的模型:线性可分支持向量机(linear support vector machine in linearly separable case)、线性支持向量机(linear support vector machine)及非线性支持向量机(non-linear support vector machine)。简单模型是复杂模型的基础,也是复杂模型的特殊情况。当训练数据线性可分时,通过硬间隔最大化(hard margin maximization),学习一个线性的分类器,即线性可 分支持向量机,又称为硬间隔支持向量机;当训练数据近似线性可分时,通过软间隔最大化(soft margin maximization),也学习一个线性的分类器,即线性支持向量机,又称为软间隔支持向量机;当训练数据线性不可分时,通过使用核技巧 (kernel trick)及软间隔最大化,学习非线性支持向量机。

三、线性可分支持向量机

考虑一个二类分类问题。假设输入空间与特征空间为两个不同的空间。输入空间为欧氏空间或离散集合,特征空间为欧氏空间或希尔伯特空间。线性可分支持向量机、线性支持向量机假设这两个空间的元素一一对应,并将输入空间中的输入映射为特征空间中的特征向量。非线性支持向量机利用一个从输入空间到特 征空间的非线性映射将输入映射为特征向量。所以,输入都由输入空间转换到特征空间,支持向量机的学习是在特征空间进行的。

假设给定一个特征空间上的线性可分训练数据集:
在这里插入图片描述学习的目标是在特征空间中找到一个分离超平面,能将实例分到不同的类。分离超平面对应于方程法向量方程 w ∗ x + b = 0 w*x+b=0 wx+b=0,它由法向量w和截距b决定,可用(w,b) 来表示。分离超平面将特征空间划分为两部分,一部分是正类,一部分是负类。法向量指向的一侧为正类,另一侧为负类。
一般地,当训练数据集线性可分时,存在无穷个分离超平面可将两类数据正确分开。感知机利用误分类最小的策略,求得分离超平面,不过这时的解有无穷多个。线性可分支持向量机利用间隔最大化求最优分离超平面,这时,解是唯一的。
考虑如图所示的二维特征空间中的分类问题。图中“。”表示正例,“x ”表示负例。训练数据集线性可分,这时有许多直线能将两类数据正确划分。线性可分支持向量机对应着将两类数据正确划分并且间隔最大的直线,如图所示。
在这里插入图片描述

3.1 函数间隔和几何间隔

上图中,有A、B、 C三个点,表示3个实例,均在分离超平面的正类一侧,预测它们的类。点A距分离超平面较远,若预测该点为正类,就比较确信预测是正确的;点C距分离超平面较近,若预测该点为正类就不那么确信;点B介于点A与C之间,预测其为正类的确信度也在A与C之间。

一般来说,一个点距离分离超平面的远近可以表示分类预测的确信程度。在超平面wx + b = 0确定的情况下,| wx + b|能够相对地表示点x距离超平面的远近。而wx + b 的符号与类标记y的符号是否一致能够表示分类是否正确。所以可用量y(wx + b)来表示分类的正确性及确信度,这就是函数间隔(functional margin)的概念。
此外,我们定义一个训练集,或者说点集关于该超平面的函数间隔为所有点与该超平面的函数间隔中,最小的函数间隔的值。
函数间隔可以表示分类预测的正确性和确信度,但是选择分离超平面时,只有函数间隔还不够。因为只要成比例地改变 w w w b b b,例如将它们改为 2 w 2w 2w 2 b 2b 2b,函数间隔就会加倍,但是超平面其实没有任何改变。因此我们需要对w进行一些约束,比如使得|| w w w||=1,这时函数间隔就成为了几何间隔。
下图给出了超平面(w,b)及其法向量w。点A表示某一实例xi,其类标记 为yi=+1。点A与超平面(w, b)的距离由线段AB给出,记作γi。
在这里插入图片描述
其中,||w||为w的L2范数。这是点A在超平面正的一侧的情形。如果点A在超平面负的一侧,即yi=-1,那么点与超平面的距离为:
在这里插入图片描述
定义(几何间隔)对于给定的训练数据集T和超平面(w,b),定义超平 面(w,b)关于样本点样本点.png的几何间隔为:
在这里插入图片描述
定义超平面(w,b)关于训练数据集T的几何间隔为超平面(w,b)关于T中所有样本点样本点.png的几何间隔之最小值,即:
在这里插入图片描述
如果||w||=l,那么函数间隔和几何间隔相等。如果超平面参数w和b成比例地改变(超平面没有改变),函数间隔也按此比例改变,而几何间隔不变。

3.2 间隔最大化

支持向量机学习的基本想法是求解能够正确划分训练数据集并且几何间隔最大的分离超平面。对线性可分的训练数据集而言,线性可分分离超平面有无穷多个(等价于感知机),但是几何间隔最大的分离超平面是唯一的。这里的间隔最大化又称为硬间隔最大化(与将要讨论的训练数据集近似线性可分时的软间隔最大化相对应)。

间隔最大化的直观解释是:对训练数据集找到几何间隔最大的超平面意味着以充分大的确信度对训练数据进行分类。也就是说,不仅将正负实例点分开,而且对最难分的实例点(离超平面最近的点)也有足够大的确信度将它们分开。这样的超平面应该对未知的新实例有很好的分类预测能力。
下面考虑如何求得一个几何间隔最大的分离超平面,即最大间隔分离超平面。具体地,这个问题可以表示为下面的约束最优化问题:
在这里插入图片描述
即我们希望最大化超平面(w,b)关于训练数据集的几何间隔γ。约束条件表示的是超平面(w,b)关于每个训练样本点的几何间隔至少是γ。
考虑几何间隔和函数间隔的关系式几何间隔和函数间隔的关系式.png,可将这个问题改写为:
在这里插入图片描述
也就是把几何间隔换为函数间隔。

函数间隔函数间隔符号.png的取值并不影响最优化问题的解。事实上,假设将w和b按比例改变为λw和λb,这时函数间隔成为λ函数间隔符号.png。函数间隔的这一改变对上面最优化问题的不等式约束没有影响,对目标函数的优化也没有影响,也就是说,它产生一个等价的最优化问题。这样,就可以取函数间隔符号.png=l。将函数间隔符号.png=l代入上面的最优化问题,注意到最大化最大化.png和最小化最小化.png是等价的,于是就得到下面的线性可分支持向量机学习的最优化问题。
在这里插入图片描述
由此,可以导出最大间隔法的支持向量机算法:
在这里插入图片描述

3.3支持向量和间隔边界

在线性可分情况下,训练数据集的样本点中与分离超平面距离最近的样本点的实例称为支持向量。
在这里插入图片描述
如图所示,在H1和H2上的点就是支持向量。
注意到H1和H2平行,并且没有实例点落在它们中间。在H1和H2之间形成一条长带,分离超平面与它们平行且位于它们中央。长带的宽度,即H1和H2之间的距离称为间隔(margin)。间隔依赖于分离超平面的法向量w,等于 2 / ∣ ∣ w ∣ ∣ 2/||w|| 2/w。H1和H2称为间隔边界。
在决定分离超平面时只有支持向量起作用,而其他实例点并不起作用。如果移动支持向量将改变所求的解;但是如果在间隔边界以外移动其他实例点,甚至去掉这些点,则解是不会改变的。由于支持向量在确定分离超平面中起着决定性作用,所以将这种分类模型称为支持向量机。支持向量的个数一般很少,所以支持向量机由很少的“重要的”训练样本确定。

3.3 软间隔最大化

3.3.1 线性支持向量机

线性可分问题的支持向量机学习方法,对线性不可分训练数据是不适用的,因为这时上述方法中的不等式约束并不能都成立。怎么才能将它扩展到线性不可分问题呢?这就需要修改硬间隔最大化,使其成为软间隔最大化。
线性不可分意味着某些样本点不能满足函数间隔大于等于1的约束条件。
了解决这个问题,可以对每个样本点进一个松池变量:
在这里插入图片描述
使函数间隔加上松弛变量大于等于1。这样,约束条件变为:
在这里插入图片描述
同时,代价目标函数变为;
在这里插入图片描述
这里,C>0称为惩罚参数,一般由应用问题决定,C值大时对误分类的惩罚增大,C值小时对误分类的惩罚减小。

3.4 非线性支持向量机与核函数

对解线性分类问题,线性分类支持向量机是一种非常有效的方法。但是,有时分类问题是非线性的,这时可以使用非线性支持向量机。本节叙述非线性支持向量机,其主要特点是利用核技巧(kernel trick)。为此,先要介绍核技巧。核技巧不仅应用于支持向量机,而且应用于其他统计学习问题。
1.非线性分类问题
非线性分类问题是指通过利用非线性模型才能很好地进行分类的问题。先看一个例子。
在这里插入图片描述
如左图,是一个分类问题,图中“•”表示正实例点,“x”表示负实例点。由图可见,无法用直线(线性模型)将正负实例正确分开,但可以用一条椭圆曲线(非线性模型)将它们正确分开
非线性问题往往不好求解,所以希望能用解线性分类问题的方法解决这个问题。所采取的方法是进行一个非线性变换,将非线性问题变换为线性问题,通过解变换后的线性问题的方法求解原来的非线性问题。对图7.7所示的例子,通过变换,将左图中椭圆变换成右图中的直线,将非线性分类问题变换为线性分类问题。
设原空间为:
在这里插入图片描述
新空间为:
在这里插入图片描述
定义从原空间到新空间的变换(映射):
在这里插入图片描述
经过变换,原空间中的点相应地变换为新空间中的点,原空间中的椭圆:
在这里插入图片描述
变换成为新空间中的直线:
在这里插入图片描述
这样,原空间的非线性可分问题就变成了新空间的线性可分问题。
上面的例子说明,用线性分类方法求解非线性分类问题分为两步:首先使用一个变换将原空间的数据映射到新空间:然后在新空间里用线性分类学习方法从训练数据中学习分类模型。核技巧就属于这样的方法。
核函数支持向量机的学习是隐式地在特征空间进行的,不需要显式地定义特征空间和映射函数。这样的技巧称为核技巧,它是巧妙地利用线性分类学习方法与核函数解决非线性问题的技术。在实际应用中,往往依赖领域知识直接选择核函数,核函数选择的有效性需要通过实验验证。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值