差分矩阵
题目链接
输入一个n行m列的整数矩阵,再输入q个操作,每个操作包含五个整数x1, y1, x2, y2, c,其中(x1, y1)和(x2, y2)表示一个子矩阵的左上角坐标和右下角坐标。
每个操作都要将选中的子矩阵中的每个元素的值加上c。
请你将进行完所有操作后的矩阵输出。
输入格式
第一行包含整数n,m,q。
接下来n行,每行包含m个整数,表示整数矩阵。
接下来q行,每行包含5个整数x1, y1, x2, y2, c,表示一个操作。
输出格式
共 n 行,每行 m 个整数,表示所有操作进行完毕后的最终矩阵。
数据范围
1≤n,m≤1000,
1≤q≤100000,
1≤x1≤x2≤n,
1≤y1≤y2≤m,
−1000≤c≤1000,
−1000≤矩阵内元素的值≤1000
输入样例:
3 4 3
1 2 2 1
3 2 2 1
1 1 1 1
1 1 2 2 1
1 3 2 3 2
3 1 3 4 1
输出样例:
2 3 4 1
4 3 4 1
2 2 2 2
算法分析
二维差分,和二维前缀和倒过来差不多,就是修改操作需要记一下
在给x1,x2,y1,y2区间加和的时候,首先x1,y1是一定要加上v的,之后将x1,y1覆盖的点都会受到影响,那么就减去v,首先是下面的点比如(1,1)=>(3,6),(4,6)这两个位置,前缀和求和返回原数组的时候是多加了一个v的,所以要在(x2+1,y1)减去v同理需要在(x1,y2+1)减去v,下面包含(x1,y1),(x2+1,y1)(x1,y2+1)的区间现在是多减了一个v
所以要在(x2+1,y2+1)的地方加上v.
代码实现
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
const int maxn=1e3+5;
int map[maxn][maxn];
int n,m,q,c,x1,x2,y1,y2;
int he[maxn][maxn];
int cha[maxn][maxn];
int main()
{
cin>>n>>m>>q;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
{
cin>>map[i][j];
cha[i][j]=map[i][j]-map[i-1][j]-map[i][j-1]+map[i-1][j-1];
}
for(int k=1;k<=q;k++)
{
cin>>x1>>y1>>x2>>y2>>c;
cha[x1][y1]+=c;
cha[x1][y2+1]-=c;
cha[x2+1][y1]-=c;
cha[x2+1][y2+1]+=c;
}
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
he[i][j]=he[i-1][j]+he[i][j-1]-he[i-1][j-1]+cha[i][j];
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
cout<<he[i][j]<<" ";
}
cout<<endl;
}
}