【实例分割】SOLO (Segmenting Objects by Locations) 模型简介

SOLO模型是一种直接实例分割的创新方法,它通过‘实例类别’思想,将实例分割问题转化为两个分支的类别感知预测。模型包含语义类别分支预测区域类别,和实例分割预测分支确定物体分割。训练时使用Focal Loss和Dice损失。SOLO避免了依赖检测框或像素Embedding学习的准确性,简化了实例分割流程。
摘要由CSDN通过智能技术生成

来源 | 极链AI云(性价比最高的共享GPU算力平台,新人注册可领取198元大礼包,价值100+小时的免费使用时长,领取地址:https://cloud.videojj.com/

作者 | 小仇【极链AI云技术原创奖励计划】

原文地址 | 【实例分割】SOLO (Segmenting Objects by Locations) 模型简介(官网论坛)

 

论文链接:

https://arxiv.org/pdf/1912.04488v3.pdf

源码链接:

https://github.com/aim-uofa/AdelaiDet
https://github.com/WXinlong/SOLO


主流的实例分割模型可以分为检测后分割(detect-then-segment)方法(如Mask RCNN)和基于像素Embedding学习的方法。

这两种方法的缺点是非常依赖于检测框或Embedding学习的准确性

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值