【实例分割论文】 SOLO:Segmenting Objects by Locations(更新代码)

SOLO是一种创新的实例分割方法,通过位置和尺寸的实例类别概念,将实例分割转化为分类问题。论文介绍了网络结构,包括FPN、Category Branch和Mask Branch,并展示了在COCO数据集上的优秀性能。Decoupled SOLO通过降低输出通道,提高了效率且保持了精度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

===========更新 2020/3/28=========

作者源代码已经开源,因此更新了结合作者源代码分析的网络实现部分;

此外,SOLO v2论文已经发布 https://arxiv.org/abs/2003.10152

=================================

论文名称:《SOLO: Segmenting Objects by Locations》

论文链接:https://arxiv.org/abs/1912.04488

参考代码:https://github.com/WXinlong/SOLO

目录

综述

背景介绍

总体思路

位置(location)

尺寸(size)

网络实现

FPN

Category Branch

Mask Branch

操作流程(附源代码)

后处理

实验结果 

Decoupled SOLO


 

综述

作者提出了一种非常简单、直接的实例分割方法。通过引入“实例类别”这一概念,将实例分割的问题转化为两个分类问题。实例类别则是根据实例中的每一个像素的位置尺寸来确定标签的,思路非常巧妙。作者提出的模型精度不错,在COCO上超越了Mask R-CNN和其他单阶段实例分割模型,但思路是我觉得最值得follow的。 

背景介绍

实例分割(Instance Segmentation)是视觉四任务中相对最难的一个,它既具备语义分割(Semantic Segmentation)的特点,需要做到像素层面上的分类,也具备目标检测(Object Detection)的一部分特点,即需要定位出不同实例,即使它们是同一种类物体。因此,实例分割的研究长期以来都依赖较为复杂的两阶段的方法,两阶段方法又分为两条线,分别是自下而上基于语义分割的方法和自上而下基于检测的方法。

自上而下的实例分割方法的思路是:首先通过目标检测的方法找出实例所在的区域(bounding box),再在检测框内进行语义分割,每个分割结果都作为一个不同的实例输出

自下而上的实例分割方法的思路是:首先进行像素级别的语义分割,再通过聚类、度量学习等手段区分不同的实例。

作者认为,这些两阶段方法都是step-wise和indirect的,因此提出疑问,实例分割与语义分割为何在解决方法上相差如此之大?是否有办法更加简单地完成实例分割?

总体思路

这里引用作者的回答来理解作者的动机与思路。

SOLO的出发点很简单,怎么样简单直接的做实例分割?语义分割和实例分割,大家都是分割,为什么解决起来大相径庭?

语义分割,其实就是逐像素的语义类

评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值