Garch模型Stata实例

文章介绍了金融时间序列的波动性集群现象,以及条件异方差模型如ARCH和GARCH在分析这种现象中的作用。通过Stata软件展示了建模过程,包括ARCH和GARCH模型的构建,以及残差的自相关性检验。文章还探讨了EGARCH模型对正负冲击的非对称效应,并指出收益率可能存在的厚尾分布,建议使用t分布。最后,进行了条件方差的预测,强调了这些模型相对于OLS的优势。
摘要由CSDN通过智能技术生成

一.理论知识

1.金融时间序列经常表现出波动性集群(或称聚类现象),从而导致股票收益率的分布出现尖峰厚尾的特征,而不是有效市场假说所形容的正态分布。条件异方差就是用来分析这种波动集群性现象的。
50等权(000050)
图一:这里画的是50等权(000050)的市场收益率时序图,呈现一段时间波动性(方差)大,一段时间波动性小的现象。

2.金融时间序列数据的频率高低,对建模分析方法的选择非常重要。
因为高频数据表现出与低频数据极为不同的特征。例如股票收益率是一个高频数据,会如上图一样表现出明显的集群;而低频数据,例如月度、季度通胀率、GDP增长率等,由于这类序列自身经常表现出较高的持久性或者平滑性,对其进行AR模型回归之后的残差序列一般不会表现出很强的异方差性。
在这里插入图片描述
图二:这是CPI的某一段时间的季度数据,低频,并没有和图一一样表现出波动性集群的特征。

3.条件异方差模型:ARCH模型,又称自回归条件异方差模型,是分析金融时间序列的根本模型;GARCH模型,又称广义自回归条件异方差模型,是在ARCH模型上发展的模型。

4.ARCH模型:
(1)核心思想:误差项在时刻t的方差依赖于时刻t-1的误差平方大小;建模过程中,涉及到两个核心的模型回归方差,分别是条件均值回归模型(原始的回归模型)、条件异方差回归模型(方差的回归模型);
(2)定义:例如ARCH(1)是最简单的ARCH模型,它包含了两个等式,如图三、图四所示。
在这里插入图片描述
式一:原始的回归模型,x_t表示自变量,y_t表示因变量,u_t表示无序列相关性的随机扰动项。

在这里插入图片描述
式二:方差的回归模型,σ_t的平方是在t时刻随机扰动项的方差,因为方差随时间变化,并且以过去的扰动项的信息为变化条件,所以称为“条件异方差”。

ARCH(1)中滞后阶数1表现在第二个等式中,建立ARCH模型,两个等式都必不可少。

4.ARCH(1)模型可以扩展到ARCH(p)模型,但不管是滞后一阶模型还是滞后p阶模型,其随机扰动项本身不存在序列相关性,但其平方项可能存在序列相关性;也就是说,我们不能用随机扰动项的历史信息来预测,但可以通过随机扰动项平方的历史信息来预测。

5.GARCH模型:在ARCH(p)模型的回归估计中,通常需要很多的滞后期数才能得到较好的拟合效果。在ARCH(1)模型的方差等式中加入σ_t的平方自身的一个滞后项,用来代替很多个u_t的平方的滞后项,从而将ARCH模型拓展到GARCH模型。

例如GARCH(1,1)模型的基本表达式是:在这里插入图片描述
式三:均值等式
在这里插入图片描述

式四:方差等式,和式二比较,可以看到GARCH模型的方差等式多了一项GARCH项。

GARCH(1,2)是指阶数为1的ARCH项和阶数为2的GARCH项,即GARCH(1,0)就是ARCH(1)模型;GARCH(p,0)模型就是ARCH§模型。

总的来说,ARCH模型是GARCH模型的一个特例。在很多情况下,GARCH(1,1)模型要比ARCH模型得到的结果更可靠,也更精确一些,因此,GARCH(1,1)是最常使用的模型之一。

6.金融变量的一个特点是许多金融时序的收益无法预测,但收益率的方差却在一定的程度上是可以预测的。也就是说,残差序列本身一般不表现出自相关性,而残差的方差却经常会表现出明显的持久性,即一定的自相关性。

7.EGARCH模型(指数GARCH模型),是GARCH模型的推广,简单的EGARCH(1,1)模型可以设立成下面的式子:在这里插入图片描述
除了方差等式分析的对象不同外,均值等式的扰动项和扰动项的绝对值与扰动项的标准差之比来捕捉正负冲击给波动性带来的非对称影响。

二.Stata相关操作命令

arch y x1 x2,arch(1/3) //ARCH(3)模型
arch y x1 x2,arch(1) garch(1) //GARCH(1,1)模型
arch y x1 x2,ar(1) ma(1) arch(1) garch(1) //带ARMA(1,1)的GARCH(1,1)模型
arch y x1 x2,arch(1) dist(t) //ARCH(1)模型,扰动项服从t分布
arch y x1 x2,earch(1) egarch(1) //EGARCH(1,1)模型
arch y x1 x2,arch(1/3) archm //ARCH(3)带上ARCH-M

需要更多关于ARCH模型和GARCH模型的命令,用:
help arch

三.具体案例分析:

use 399300.dta,clear //选取沪深300的数据
line rmt date //画出日收益率的时间趋势图,其中rmt是股指收益率,date为日期

在这里插入图片描述
图三:股指收益率的时间趋势图
由图三可看出该序列存在较为明显的波动性聚集特征。为了更好的对照,现在先建立自回归模型(不是一开始就要建立自回归条件异方差ARCH模型),并使用信息准则来确定其阶数。

tsset date//设置date为时间变量
varsoc rmt,maxlag(8) //因为AR模型可以看作为一维的VAR模型,所以直接用VAR模型的命令

在这里插入图片描述
图四结果显示,大多数准则建议选择AR(7)模型。因此,用OLS估计AR(7)模型:

reg rmt L(1/7).rmt

在这里插入图片描述
图五:上表显示,7阶滞后的系数依然显著地不为0.下面对OLS残差是否存在ARCH效应进行LM检验。

estat archlm,lags(1/7) //其中选择性“lags(1/7)”表示检验1-7阶的残差平方滞后项

在这里插入图片描述
图六:结果显示,对ARCH(1)——ARCH(7)的检验结果均表明,存在显著的ARCH效应。
下面通过画图更直观地考察OLS的残差平方项是否存在自相关:

predict e1,res
gen e2=e1^2
ac e2
pac e2

在这里插入图片描述
图七:残差平方的自相关图在这里插入图片描述
图八:残差平方的偏自相关图

corrgram e2,lags(10)

在这里插入图片描述
图九:Q检验的结果

从上面三个结果可知,不管是自相关图、偏自相关图还是Q检验,均显示OLS残差平方序列存在自相关,故扰动项存在条件异方差,即波动性集聚现象。这个结论和LM检验的结果相一致。
为此,考察ARCH(p)模型。为了确定p,估计残差序列的自回归阶数:

varsoc e2

在这里插入图片描述
图十:结果表明,第四阶带的星星最多,所以建立ARCH(4)模型:

arch rmt L(1/7).rmt,arch(1/4) nolog

在这里插入图片描述
图十一:上表显示,所有的ARCH项均很显著。下面估计更为简洁的GARCH(1,1)模型:

arch rmt L(1/7).rmt,arch(1) garch(1) nolog

在这里插入图片描述
图十二:结果显示,ARCH(1)与GARCH(1)均很显著。且关于沪深300序列的完整时间序列模型为:在这里插入图片描述
图十三:①式为均值方程,②式为方差方程。

下面考虑EGARCH(1,1)模型:

arch rmt L(1/7).rmt,earch(1) egarch(1) nolog

用上面这段代码,一直得不到结果,stata界面左上角菜单栏一直显示红色圈圈白色叉的标志,最后弹出下面这段红色的字,说明无法得到收敛结果,计算不出来。在这里插入图片描述
在这里插入图片描述
为了可以继续介绍下去,我改了模型,如下图所示。(但如果你也做不下去,无法得到收敛的结果,应该找找论文或者一些论坛查看怎么解决)
新模型:

arch rmt L(1/1).rmt,earch(1) egarch(1) nolog

在这里插入图片描述
图十四:结果显示,非对称效应(earch)与对称效应(earch_a)均十分显著。前者的规模约为后者的1/8。非对称效应的符号为负,表明“坏消息”的作用更大。

上面建立的ARCH模型、GARCH模型、EGARCH模型中,均假设扰动项服从正态分布。但是股指收益率可能存在厚尾分布。

kdensity rmt

在这里插入图片描述
图十五:日收益率的核密度与正态密度

上图可以看出收益率分布图有尖峰厚尾的现象,下面对扰动项的正态性进行严格的统计检验:

quietly var rmt,lags(1/7)
varnorm

在这里插入图片描述
图十六:以上各检验都强烈拒绝“扰动项服从正态分布”的原假设。
为此,假设扰动项服从t分布,重新用GARCH(1,1)模型进行估计

arch rmt L(1/7).rmt,arch(1) garch(1) dist(t) nolog  //加入了dist(t),扰动项服从t分布

在这里插入图片描述
最后,对GARCH(1,1)模型的条件方差进行预测

quietly arch rmt L(1/7).rmt,arch(1) garch(1) nolog
predict h,variance //这里的variance是方差的意思,预测的是方差(波动率),不是收益率喔!如果把variance改成r或者residual,就是计算回归残差了。
line h date //date为日期,在一开始建模的时候就用tsset命令设定为时间变量了

在这里插入图片描述
上图显示,日收益率的条件方差有时波动,有时急剧上升。如果用OLS估计,则无法得到这些信息。

——————手动分割线————2023.3.12——————祝你写论文顺利————

  • 42
    点赞
  • 222
    收藏
    觉得还不错? 一键收藏
  • 8
    评论
### 回答1: DCC-GARCH模型是一种常用的多变量时间序列模型,用于分析不同变量之间的相关性和波动性。在Stata中,实现DCC-GARCH模型的步骤如下: 1. 导入数据:使用Stata命令“use”或“import”导入需要分析的多变量时间序列数据。 2. 检查数据:使用Stata命令“describe”或“summarize”检查数据的基本统计信息,如均值、标准差、最大值、最小值等。 3. 估计单变量GARCH模型:使用Stata命令“arch”或“garch”估计每个变量的单变量GARCH模型,得到每个变量的条件方差。 4. 估计DCC模型:使用Stata命令“dcc”估计DCC模型,得到不同变量之间的相关系数和条件协方差矩阵。 5. 模型诊断:使用Stata命令“estat”或“predict”进行模型诊断,如残差分析、模型拟合度检验等。 6. 模型预测:使用Stata命令“predict”进行模型预测,得到未来一段时间内各变量的条件方差和相关系数。 以上就是在Stata中实现DCC-GARCH模型的基本步骤。需要注意的是,DCC-GARCH模型的估计需要较长的计算时间和较高的计算资源,因此在实际应用中需要谨慎选择变量和模型参数,以保证模型的准确性和稳定性。 ### 回答2: DCC-GARCH模型是一种多变量时间序列分析方法,可以用来对多个变量之间的相关性进行建模和预测。在Stata软件中,实现DCC-GARCH模型的步骤如下: 1. 导入数据:首先需要将需要分析的多个变量的数据导入Stata软件,可以使用命令“import delimited”或者“use”等命令进行数据导入。 2. 模型设定:接下来需要对DCC-GARCH模型进行设定。使用命令“mgarch dcc”进行设定,其中需要指定变量、GARCH阶数、DCC阶数,以及使用的似然函数等参数。 3. 模型拟合:完成模型设定后,使用命令“mgarch dcc”对DCC-GARCH模型进行拟合,这一步需要使用“ml method”指定拟合方法(如maximum likelihood)和“noconstant”指定是否包含常数项。 4. 模型诊断:完成模型拟合后,需要对模型进行诊断,包括模型拟合程度和残差序列的自相关性等。使用命令“archlm”、“predict res, residual”等命令进行检验。 5. 模型预测:最后可以使用拟合好的DCC-GARCH模型进行预测。使用命令“predict”进行预测,并可以使用诸如“predict interval”等命令进行置信区间计算等操作。 总体来说,DCC-GARCH模型Stata建模步骤比较复杂,需要一定的统计背景和机器学习分析经验。在使用时应该仔细考虑每一步骤的参数和命令的设置,以得到准确可靠的分析结果。 ### 回答3: DCC-GARCH模型是一种常用的多变量GARCH模型,可用于描述两个或多个不同金融资产之间的关系。Stata是一个流行的统计分析软件,具有实现DCC-GARCH模型的工具。下面是使用Stata实现DCC-GARCH模型的步骤: 第一步:导入数据 首先,将数据集导入Stata。数据可以是多个时间序列资产(如股票价格),以及与它们相关的其他变量(如指标)。在导入数据之后,确保它们被正确地命名并按时间顺序排列。 第二步:检查数据 在估计DCC-GARCH模型之前,需要对数据进行一些简单的检查。这包括检查数据是否存在缺失值或离群值,以及考虑是否需要进行数据变换。 第三步:估计单变量GARCH模型 在DCC-GARCH模型中,需要使用每个资产的单变量GARCH模型估计资产的波动率。在Stata中,可以使用ARCH或GARCH函数估计每个资产的GARCH模型。 第四步:估计DCC模型 一旦单变量GARCH模型的估计值获得,就可以使用DCC模型把资产间的波动联系起来。使用dcc函数可以在Stata中估计DCC模型,并获得相关的参数估计值。 第五步:诊断检验 在完成DCC模型的估计后,需要对模型进行一些诊断检验。这包括对残差进行检验,以确保它们满足一些统计模型的假设条件。可以使用Stata中的命令进行此类检验。 总结: 尽管可以在Stata中使用多种命令实现DCC-GARCH模型,但以上步骤提供了一个基本的流程。从导入数据到估计DCC模型,再到模型的诊断检验,这些步骤能够帮助研究人员和分析师轻松地应用DCC-GARCH模型进行金融资产的波动率建模。
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值