概要
本文提出了一种从原始传感器数据自动重建室内环境平面图的新方法。现有的方法是通过检测角点并将它们连接起来,以平面图形的形式生成平面图,与此相反,本文采用了一种策略,将空间分解为多边形分区,并通过能量最小化来选择属于墙壁结构的边缘。通过高效的空间划分数据结构而不是传统的精细角点检测任务,本文的方法对不完美的数据提供高鲁棒性。
题目:Floorplan Generation from 3D Point Clouds:a space partitioning approach
作者:Hao Fang, Florent Lafarge, Cihui Pan, Hui Huang
论文链接:
https://www.sciencedirect.com/science/article/pii/S0924271621000538
概述
本文所描述的算法旨在将现实世界室内场景的点云和相关的像素级房间实例标签映射作为输入,这种映射通常由最先进的实例语义分割技术得到。为了更好地描述室内场景的几何形状,本文算法首先对输入的点云进行配准,使其向上方向与世界坐标中的z轴对齐,并使用标准方法将点云转换成