【从3D点云生成平面图:一种空间划分方法】

本文提出了一种从3D点云数据自动重建室内环境平面图的新方法,通过空间划分和能量最小化选择属于墙壁的边缘。这种方法对不完美的数据具有高鲁棒性,适用于室内导航、环境建模和虚拟现实应用。算法包括形状检测、平面投影和马尔可夫随机场问题求解,有效提取几何信息并分配房间标签。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

文章目录

概要

本文提出了一种从原始传感器数据自动重建室内环境平面图的新方法。现有的方法是通过检测角点并将它们连接起来,以平面图形的形式生成平面图,与此相反,本文采用了一种策略,将空间分解为多边形分区,并通过能量最小化来选择属于墙壁结构的边缘。通过高效的空间划分数据结构而不是传统的精细角点检测任务,本文的方法对不完美的数据提供高鲁棒性。

题目:Floorplan Generation from 3D Point Clouds:a space partitioning approach
作者:Hao Fang, Florent Lafarge, Cihui Pan, Hui Huang
论文链接:
https://www.sciencedirect.com/science/article/pii/S0924271621000538

概述

本文所描述的算法旨在将现实世界室内场景的点云和相关的像素级房间实例标签映射作为输入,这种映射通常由最先进的实例语义分割技术得到。为了更好地描述室内场景的几何形状,本文算法首先对输入的点云进行配准,使其向上方向与世界坐标中的z轴对齐,并使用标准方法将点云转换成

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值