一、LangChain是什么?
LangChain是一个框架,它提供了一套工具和接口,使得开发者能够更容易地构建和部署基于大型语言模型(LLM)的应用程序。它抽象化了与LLM交互的复杂性,允许开发者专注于应用逻辑。
二、为什么需要LangChain?
- 模型能力扩展:虽然LLM本身非常强大,但它们的能力有限。LangChain可以帮助模型与外部系统(如数据库、API、文件系统等)交互,扩展其功能。
- 应用开发效率:LangChain提供了一系列预构建的组件,这些组件可以快速组合,从而加速应用开发过程。
- 上下文管理:LangChain可以帮助管理对话和应用的上下文,使得交互更加连贯和准确。
三、LangChain主要概念
1. Models(模型)
LLMs(大型语言模型):提供理解和生成文本的能力,是LangChain的核心。
Chat Models(聊天模型):专门用于对话场景,使得模型能够进行流畅的对话。
Text Embedding Models(文本嵌入模型):将文本转换为向量,用于理解和比较文本内容。
2. Prompts(提示)
Prompt Templates(提示模板):定义了如何指导模型生成特定的输出。它们是预定义的文本模板,可以插入变量来定制化输入。
3.Indexes(索引)
Document Loaders(文档加载器):用于将不同格式的文档加载到系统中。
Text Splitters(文本分割器):将长文本分割成更小的片段,以便模型处理。
Vector Stores(向量存储):存储文本的向量表示,便于快速检索。
Retrievers(检索器):在向量存储中检索相关信息,用于提供上下文或回答问题。
4. Memory(记忆)
Chat Message History(聊天消息历史):保持对话的连贯性,使得模型能够参考之前的交互。
5. Chains(链)
Chain:一系列操作,可以是模型调用、提示、索引操作等,用于完成特定任务。
LLM Chain:最简单的链,直接与LLM交互。
Index-related Chains:结合了索引操作的链,用于信息检索和上下文增强。
6. Agents(代理)
Agent:一个智能实体,能够根据输入和上下文选择并执行一系列操作(工具)来完成任务。
AgentExecutor:负责运行Agent,直到满足停止条件。
四、LangChain 入门指南
这里给大家推荐一本大模型入门书籍《LangChain 入门指南》,这本书专门为那些对自然语言处理技术感兴趣的读者提供了系统的LLM应用开发指南。
全书分为11章,从LLM基础知识开始,通过LangChain这个开源框架为读者解读整个LLM应用开发流程。
有需要这本书籍的PDF文档,可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费】
目录内容
第1 章 LangChain:开启大语言模型时代的钥匙
第2 章 LangChain 入门指南
第3 章 模型I/O
第4 章 数据增强模块
第5 章 链
第6 章 记忆模块
第7 章 Agent 模块
第8 章 回调处理器
第9 章 使用LangChain 构建应用程序
第10 章 集成
第11 章 LLM 应用开发必学知识
文章最后
AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。
学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。
这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频,免费分享!
可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费】