引言
数据简单整合一下,一个NHANES新指标就诞生了!
今天的这篇文章,学者将9种重金属的数据加权整合一下,开发了一个新指标金属混合物炎症指数(MMII),量化了这9种重金属共同作用的情况,轻松发文一区(IF=8.2)!
接下来,让我们一起看看这篇文章!
随着工业化的发展,废水和燃料尾气排放等工业活动显著增加了人类环境中重金属污染物的暴露水平,这些重金属在人体组织、器官中不断积累,对机体健康构成了严重威胁。
然而,先前的研究大多聚焦于单个重金属与全身炎症生物标志物升高之间的关联,在一定程度上限制了我们对多种重金属共同暴露下炎症潜能的全面认知。
2024年10月15日,华中科技大学学者用NHANES数据库,在期刊《Science of The Total Environment》(医学一区top,IF=8.2)发表题为:“Low-grade systemic inflammation links heavy metal exposures to mortality: A multi-metal inflammatory index approach”的研究论文,旨在评估9种重金属(镉、钴、钼、铅、铂、锑、铊、钨、铀)暴露水平、低度全身炎症和全因死亡率之间的关联。
研究结果表明,随着体内镉、锑和铀的含量升高,个体死亡风险也上升。此外,低度全身炎症在镉和锑与死亡风险的关联中,发挥了中介作用。
本公号回复“ 原文”即可获得文献PDF等资料。发文难?我们的NHANES平台半天就能分析一篇SCI文章!如感兴趣请联系郑老师团队,微信号:aq566665
研究团队基于美国国家健康与营养调查(NHANES)数据库2005~2010年的数据,经过纳排,最终纳入了3741名年龄≥18岁的测量过9种尿液重金属含量的成年人,其中581人现已死亡。
图1 研究人群的流程图
研究团队利用以下五种标志物来评估低度全身炎症反应程度:
C反应蛋白(CRP);
中性粒细胞与淋巴细胞比值(NLR);
血小板与淋巴细胞比值(PLR);
全身免疫炎症指数(SII)。
研究团队采用了加权多变量COX回归分析,评估重金属、全身炎症标志物与全因死亡率之间的关系。此外,他们还通过Sobel检验探究低度全身炎症在重金属与全因死亡率之间的关联中的是否起到了中介作用。
此外,研究团队还运用降秩回归(RRR)模型,开发了金属混合物炎症指数(MMII),该指数是9种重金属的加权总和,旨在量化多金属混合物在人体内可能引发的全身炎症反应的程度。
MMII可以预测由金属混合物引发的全身炎症情况
研究结果显示,镉、锑和铀与全因死亡率之间呈正相关。这意味着,尿液内镉、锑和铀含量越高,个体死亡风险就越大。
表1 重金属与全因死亡率的关联
同时,研究团队还探讨了9种重金属与全身炎症标志物之间的关联,结果如下:
镉和锑与CRP水平呈正相关;
镉,钴和锑与PLR水平呈正相关;
汞、钴、钼、铅和铊与CRP水平呈负相关。
这表明,9种重金属与CRP和PLR水平之间的关联性存在差异,其中镉和锑与这两者均呈正相关。
表2 重金属与全身炎症标志物的关联
中介分析结果表明,低度全身性炎症在特定重金属(镉和锑)与死亡风险之间的关联起到轻微的中介作用,介导比例为3.11%~5.38%。
图2 中介分析
此外,研究团队还探讨了MMII及其与全因死亡率的关系,结果显示,MMII与CRP和PLR呈正相关。具体而言,MMII可以预测体内炎症的水平。
进一步的研究结果揭示,个体的MMII水平越高,其面临的死亡风险也就越大。
图3 MMII与全因死亡率之间的关联
综上所述,研究团队认为,接触重金属会增加个体的死亡风险。此外,金属混合物炎症指数(MMII)不仅可以预测金属混合物引发的全身炎症情况,还与全因死亡风险的增加密切关联。
学会作者的这个思路模板,用新指标发文就不用等他人啦!欢迎关注“公共数据库与孟德尔随机化”公众号,我们将持续分享NHANES新指标的最新发文思路!如果你也想用NHANES新指标发一区,最好的机会就在眼前!现在加入郑老师的NHANES一对一指导服务课程,买课立赠一年的NHANES平台使用权,你想要的指标我们都帮你提取,这发文章速度不是嘎嘎快!
关于郑老师团队及公众号
大型医学统计公众号平台,专注于医学生、医护工作者学术研究统计支持,我们是你们统计助理
郑老师团队开设的医学统计培训课程,各类发文需求都可以满足:
2025年将新增R、python机器学习与预测模型、全球老年人纵向健康数据库挖掘、轨迹增长模型课程等。
(目前购买统计课程还可参与发表SCI注明我们平台退课程费用的活动,详情扫描下方二维码添加助教微信咨询详情)
详情联系助教小董咨询(微信号aq566665)