新指标!中国学者用NAHNES心血管指标TyG-ABSI,发文一区top(IF=8.5)

引言

TyG指标发文这么多,还能怎么创新?

今天分享的这篇文章,中国学者另辟蹊径,将TyG指数与体型指数(ABSI)联合起来,提出了一个新的预测心血管死亡风险的指标——TyG-ABSI!感兴趣的快一起看下去吧。

ps:文中涉及的指标都可以在NHANES Online平台上提取。

胰岛素抵抗与内脏肥胖是心血管疾病的核心驱动因素。然而,但现有指标(甘油三酯-葡萄糖(TyG)指数及其衍生指标(如TyG-BMI、TyG-WC))因依赖体重或腰围等传统参数,预测能力受限。

体型指数(ABSI)通过标准化腰围,独立于体重反映内脏脂肪,展现出独特优势。然而,二者如何协同影响心血管死亡风险、能否构建更优指标,仍是未解之谜。

2025年2月7日,中国学者用NHANES数据库,在期刊Cardiovascular Diabetology(医学一区Top,IF=8.5)发表题为:“The synergistic effect of the triglyceride-glucose index and a body shape index on cardiovascular mortality: the construction of a novel cardiovascular risk marker”的研究论文,旨在探讨ABSI和TyG对全人群心血管死亡风险是否存在协同作用。

√学习tips

文中涉及的指标TyG指数、ABSI、TyG-BMI、TyG-WHtR、HOMA-IR、eGFR等综合指标,郑老师团队开发的NHANES Online平台可一键快速提取数据。

感兴趣的同学可点击下方链接免费试用:

NHANES数据下载与整合:

http://zs.medsta.cn/nhanes_data/nhanes_data_2.0.2.7.0_trial/

NHANES数据加权分析模块:

http://zs.medsta.cn/nhanes_weight/nhanes_weight_2.0.2.7.0_trial/

NHANES数据非加权分析模块:

http://zs.medsta.cn/nhanes_analysis/nhanes_analysis_2.0.2.7.0_trial/

研究结果表明,较于其他TyG和ABSI组合的个体,高TyG和高ABSI水平的个体的死亡风险最高,这意味着二者对个体心血管死亡风险的影响存在协同作用。

本公号回复“ 原文”即可获得文献PDF等资料。

研究团队基于美国国家健康与营养调查(NHANES)数据库2001-2018年的数据,经过纳排,最终纳入了17,329名≥20岁符合条件的参与者,平均年龄为 45.4 岁,男性占50.1%。在8.92年的中位随访期间,共发生673例心血管死亡事件。

图1 参与者的筛选流程

研究结果显示,无论是糖尿病患者还是非糖尿病患者,高TyG和高ABSI的个体的心血管死亡风险均最高,这意味着两者存在协同效应。

基于上述结果,研究团队进一步将这两个指标相乘,建立TyG-ABSI。

结果显示,TyG-ABSI与糖尿病患者和非糖尿病患者的心血管死亡风险分别呈J型和正线性相关。

图2 RCS曲线

图3 TyG 指数和ABSI 对心血管死亡风险的协同作用

随后,研究团队对比了TyG-ABSI与现有的评估指标预测心血管死亡风险的性能,结果显示,TyG-ABSI 对心血管死亡风险的预测价值大于TyG指数及其衍生指标(TyG-BMI、TyG-WC、TyG-WHtR)。

图4 ROC曲线

此外,中介分析结果表明,动脉硬度在很大程度上介导了 TyG-ABSI 与心血管死亡风险之间的关联,中介比例高达 42.7%。

表1 中介分析 

综上所述,研究团队认为,TyG-ABSI可作为预测心血管死亡风险的有效指标。

值得注意的是: 本文的趋势性分析采用了per 1-SD,即将原始的连续型变量进行标准化处理后再带入到回归模型中,解释为每增加1个SD效应值的变化量。

平台指标查找

以TyG为例

  • 登录界面后选择智能统计选项----下拉菜单选择nhanes分析平台

  • 选择nhanes数据下载平台---这些备用链接都可以进入

  • nhanes数据下载平台1介绍了我们本次更新的综合指标: MAR、HALP、HRR、NLR、ABSI等,如果您有需要都可以一键下载使用

  • 搜索需要的指标即可。除了文中提到的TyG,我们还可以提取TyG_BMI、TyG_WHTR、ABSI、HOMA-IR、eGFR等

TyG-ABSI的生成

  • 那么TyG和ABSI怎么联合呢? NHANES Online平台教你如何一键生成---先在数据下载平台下载TyG和ABSI指标

  • 导入分析模块---选择样本权重设置---数据整理---衍生新变量,将TyG与ABSI相乘,点击确认即可生成TyG-ABSI

如果你也想用 NHANES 数据库发文?别再纠结了! 郑老师的 NHANES Online 平台已整合 100 种核心指标,大幅提升你的数据处理效率,统计分析半天就能完成! 如果有其他指标需求,我们也会优先帮你提取,让你的研究更加高效!

欢迎关注“公共数据库与孟德尔随机化”公众号,我们将持续为你提供NHANES数据库的优秀文章!

数据集介绍:多类道路车辆目标检测数据集 、基础信息 数据集名称:多类道路车辆目标检测数据集 图片数量: - 训练集:7,325张图片 - 验证集:355张图片 - 测试集:184张图片 总计:7,864张道路场景图片 分类类别: - Bus(公交车):城市道路与高速场景中的大型公共交通工具 - Cars(小型汽车):涵盖轿车、SUV等常见乘用车型 - Motorbike(摩托车):两轮机动车辆,含不同骑行姿态样本 - Truck(卡车):包含中型货运车辆与重型运输卡车 标注格式: YOLO格式标注,包含归化坐标的边界框与类别标签,适配主流目标检测框架。 数据特性: 覆盖多种光照条件与道路场景,包含车辆密集分布与复杂背景样本。 二、适用场景 自动驾驶感知系统开发: 用于训练车辆识别模块,提升自动驾驶系统对道路参与者的实时检测与分类能力。 交通流量监控分析: 支持构建智能交通管理系统,实现道路车辆类型统计与密度分析。 智慧城市应用: 集成至城市级交通管理平台,优化信号灯控制与道路资源分配。 学术研究领域: 为计算机视觉算法研究提供标准化评测基准,支持多目标检测模型优化。 三、数据集优势 高场景覆盖率: 包含城市道路、高速公路等多种驾驶环境,覆盖车辆静止、行驶、遮挡等现实场景。 精细化标注体系: 采用YOLO标准格式标注,每张图片均经过双重质检,确保边界框与类别标签的精准对应。 类别平衡设计: 四类车辆样本量经科学配比,避免模型训练时的类别偏向问题。 工程适配性强: 可直接应用于YOLO系列模型训练,支持快速迁移至车载计算平台部署。 现实应用价值: 专注自动驾驶核心检测需求,为车辆感知模块开发提供高质量数据支撑。
内容概要:本文介绍了DeepSeek与Mermaid结合实现可视化图表自动化生成的技术及其应用场景。DeepSeek是款由杭州深度求索人工智能基础技术研究有限公司开发的大语言模型,具有强大的自然语言处理能力,能理解复杂的自然语言指令并生成对应的Mermaid代码。Mermaid是款基于文本的开源图表绘制工具,能够将简洁的文本描述转化为精美的流程图、序列图、甘特图等。两者结合,通过DeepSeek将自然语言转化为Mermaid代码,再由Mermaid将代码渲染成直观的图表,极大提高了图表制作的效率和准确性。文章详细描述了DeepSeek的发展历程、技术架构及应用场景,Mermaid的基础语法和图表类型,并通过个电商平台开发项目的实战演练展示了二者结合的具体应用过程。 适合人群:具备定编程基础和技术理解能力的研发人员、项目经理、数据分析师等。 使用场景及目标:①需求分析阶段,快速生成业务流程图和功能关系图;②设计阶段,生成系统架构图和数据库设计图;③实现阶段,辅助代码编写,提高编码效率;④验证阶段,生成测试用例和测试报告图表,直观展示测试结果。 阅读建议:在学习和使用DeepSeek与Mermaid的过程中,建议读者结合具体项目需求,多实践生成图表和代码,熟悉两者的交互方式和使用技巧,充分利用官方文档和社资源解决遇到的问题,逐步提高图表绘制和代码编写的准确性和效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值