>- **🍨 本文为[🔗365天深度学习训练营]
>- **🍖 原作者:[K同学啊]
实验目的
本周主要是了解C3的结构,方便后续YOLOv5算法的学习
我的环境
- 语言环境:Python3.8
- 编译器:Jupyter Lab
- 数据集:天气识别数据集(P3周)
- 深度学习环境:Pytorch
- torch==1.12.1+cu113
- torchvision==0.13.1+cu113
实验流程:
1. 设置GPU
如果设备上支持GPU就使用GPU,否则使用CPU
2. 导入数据
# 关于transforms.Compose的更多介绍可以参考:https://blog.csdn.net/qq_38251616/article/details/124878863
train_transforms = transforms.Compose([
transforms.Resize([224, 224]), # 将输入图片resize成统一尺寸
# transforms.RandomHorizontalFlip(), # 随机水平翻转
transforms.ToTensor(), # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
transforms.Normalize( # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]) # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])
test_transform = transforms.Compose([
transforms.Resize([224, 224]), # 将输入图片resize成统一尺寸
transforms.ToTensor(), # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
transforms.Normalize( # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]) # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])
total_data = datasets.ImageFolder("./data_8/",transform=train_transforms)
total_data
total_data.class_to_idx
3. 划分数据集
train_size = int(0.8 * len(total_data))
test_size = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
train_dataset, test_dataset
batch_size = 4
train_dl = torch.utils.data.DataLoader(train_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=1)
test_dl = torch.utils.data.DataLoader(test_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=1)
for X, y in test_dl:
print("Shape of X [N, C, H, W]: ", X.shape)
print("Shape of y: ", y.shape, y.dtype)
break
4. 搭建包含 C3 模块的模型
import torch.nn.functional as F
def autopad(k, p=None): # kernel, padding
# Pad to 'same'
if p is None:
p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
return p
class Conv(nn.Module):
# Standard convolution
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
super().__init__()
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)
self.bn = nn.BatchNorm2d(c2)
self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
def forward(self, x):
return self.act(self.bn(self.conv(x)))
class Bottleneck(nn.Module):
# Standard bottleneck
def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
super().__init__()
c_ = int(c2 * e) # hidden channels
self.cv1 = Conv(c1, c_, 1, 1)
self.cv2 = Conv(c_, c2, 3, 1, g=g)
self.add = shortcut and c1 == c2
def forward(self, x):
return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
class C3(nn.Module):
# CSP Bottleneck with 3 convolutions
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
super().__init__()
c_ = int(c2 * e) # hidden channels
self.cv1 = Conv(c1, c_, 1, 1)
self.cv2 = Conv(c1, c_, 1, 1)
self.cv3 = Conv(2 * c_, c2, 1) # act=FReLU(c2)
self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
def forward(self, x):
return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1))
class model_K(nn.Module):
def __init__(self):
super(model_K, self).__init__()
# 卷积模块
self.Conv = Conv(3, 32, 3, 2)
# C3模块1
self.C3_1 = C3(32, 64, 3, 2)
# 全连接网络层,用于分类
self.classifier = nn.Sequential(
nn.Linear(in_features=802816, out_features=100),
nn.ReLU(),
nn.Linear(in_features=100, out_features=4)
)
def forward(self, x):
x = self.Conv(x)
x = self.C3_1(x)
x = torch.flatten(x, start_dim=1)
x = self.classifier(x)
return x
device = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))
model = model_K().to(device)
model
Using cuda device model_K( (Conv): Conv( (conv): Conv2d(3, 32, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act): SiLU() ) (C3_1): C3( (cv1): Conv( (conv): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act): SiLU() ) (cv2): Conv( (conv): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act): SiLU() ) (cv3): Conv( (conv): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act): SiLU() ) (m): Sequential( (0): Bottleneck( (cv1): Conv( (conv): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act): SiLU() ) (cv2): Conv( (conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act): SiLU() ) ) (1): Bottleneck( (cv1): Conv( (conv): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act): SiLU() ) (cv2): Conv( (conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act): SiLU() ) ) (2): Bottleneck( (cv1): Conv( (conv): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1), bias=False) (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act): SiLU() ) (cv2): Conv( (conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (act): SiLU() ) ) ) ) (classifier): Sequential( (0): Linear(in_features=802816, out_features=100, bias=True) (1): ReLU() (2): Linear(in_features=100, out_features=4, bias=True) ) )
5. 查看模型详情
# 统计模型参数量以及其他指标
import torchsummary as summary
summary.summary(model, (3, 224, 224))
---------------------------------------------------------------- Layer (type) Output Shape Param # ================================================================ Conv2d-1 [-1, 32, 112, 112] 864 BatchNorm2d-2 [-1, 32, 112, 112] 64 SiLU-3 [-1, 32, 112, 112] 0 Conv-4 [-1, 32, 112, 112] 0 Conv2d-5 [-1, 32, 112, 112] 1,024 BatchNorm2d-6 [-1, 32, 112, 112] 64 SiLU-7 [-1, 32, 112, 112] 0 Conv-8 [-1, 32, 112, 112] 0 Conv2d-9 [-1, 32, 112, 112] 1,024 BatchNorm2d-10 [-1, 32, 112, 112] 64 SiLU-11 [-1, 32, 112, 112] 0 Conv-12 [-1, 32, 112, 112] 0 Conv2d-13 [-1, 32, 112, 112] 9,216 BatchNorm2d-14 [-1, 32, 112, 112] 64 SiLU-15 [-1, 32, 112, 112] 0 Conv-16 [-1, 32, 112, 112] 0 Bottleneck-17 [-1, 32, 112, 112] 0 Conv2d-18 [-1, 32, 112, 112] 1,024 BatchNorm2d-19 [-1, 32, 112, 112] 64 SiLU-20 [-1, 32, 112, 112] 0 Conv-21 [-1, 32, 112, 112] 0 Conv2d-22 [-1, 32, 112, 112] 9,216 BatchNorm2d-23 [-1, 32, 112, 112] 64 SiLU-24 [-1, 32, 112, 112] 0 Conv-25 [-1, 32, 112, 112] 0 Bottleneck-26 [-1, 32, 112, 112] 0 Conv2d-27 [-1, 32, 112, 112] 1,024 BatchNorm2d-28 [-1, 32, 112, 112] 64 SiLU-29 [-1, 32, 112, 112] 0 Conv-30 [-1, 32, 112, 112] 0 Conv2d-31 [-1, 32, 112, 112] 9,216 BatchNorm2d-32 [-1, 32, 112, 112] 64 SiLU-33 [-1, 32, 112, 112] 0 Conv-34 [-1, 32, 112, 112] 0 Bottleneck-35 [-1, 32, 112, 112] 0 Conv2d-36 [-1, 32, 112, 112] 1,024 BatchNorm2d-37 [-1, 32, 112, 112] 64 SiLU-38 [-1, 32, 112, 112] 0 Conv-39 [-1, 32, 112, 112] 0 Conv2d-40 [-1, 64, 112, 112] 4,096 BatchNorm2d-41 [-1, 64, 112, 112] 128 SiLU-42 [-1, 64, 112, 112] 0 Conv-43 [-1, 64, 112, 112] 0 C3-44 [-1, 64, 112, 112] 0 Linear-45 [-1, 100] 80,281,700 ReLU-46 [-1, 100] 0 Linear-47 [-1, 4] 404 ================================================================ Total params: 80,320,536 Trainable params: 80,320,536 Non-trainable params: 0 ---------------------------------------------------------------- Input size (MB): 0.57 Forward/backward pass size (MB): 150.06 Params size (MB): 306.40 Estimated Total Size (MB): 457.04 ----------------------------------------------------------------
6. 编写训练函数
# 训练循环
def train(dataloader, model, loss_fn, optimizer):
size = len(dataloader.dataset) # 训练集的大小
num_batches = len(dataloader) # 批次数目, (size/batch_size,向上取整)
train_loss, train_acc = 0, 0 # 初始化训练损失和正确率
for X, y in dataloader: # 获取图片及其标签
X, y = X.to(device), y.to(device)
# 计算预测误差
pred = model(X) # 网络输出
loss = loss_fn(pred, y) # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
# 反向传播
optimizer.zero_grad() # grad属性归零
loss.backward() # 反向传播
optimizer.step() # 每一步自动更新
# 记录acc与loss
train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()
train_loss += loss.item()
train_acc /= size
train_loss /= num_batches
return train_acc, train_loss
7. 编写测试函数
def test (dataloader, model, loss_fn):
size = len(dataloader.dataset) # 测试集的大小
num_batches = len(dataloader) # 批次数目, (size/batch_size,向上取整)
test_loss, test_acc = 0, 0
# 当不进行训练时,停止梯度更新,节省计算内存消耗
with torch.no_grad():
for imgs, target in dataloader:
imgs, target = imgs.to(device), target.to(device)
# 计算loss
target_pred = model(imgs)
loss = loss_fn(target_pred, target)
test_loss += loss.item()
test_acc += (target_pred.argmax(1) == target).type(torch.float).sum().item()
test_acc /= size
test_loss /= num_batches
return test_acc, test_loss
8. 正式训练
import copy
optimizer = torch.optim.Adam(model.parameters(), lr= 1e-4)
loss_fn = nn.CrossEntropyLoss() # 创建损失函数
epochs = 20
train_loss = []
train_acc = []
test_loss = []
test_acc = []
best_acc = 0 # 设置一个最佳准确率,作为最佳模型的判别指标
for epoch in range(epochs):
model.train()
epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, optimizer)
model.eval()
epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
# 保存最佳模型到 best_model
if epoch_test_acc > best_acc:
best_acc = epoch_test_acc
best_model = copy.deepcopy(model)
train_acc.append(epoch_train_acc)
train_loss.append(epoch_train_loss)
test_acc.append(epoch_test_acc)
test_loss.append(epoch_test_loss)
# 获取当前的学习率
lr = optimizer.state_dict()['param_groups'][0]['lr']
template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr:{:.2E}')
print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss,
epoch_test_acc*100, epoch_test_loss, lr))
# 保存最佳模型到文件中
PATH = './best_model.pth' # 保存的参数文件名
torch.save(model.state_dict(), PATH)
print('Done')
9. 结果可视化(Loss 与 Accuracy 图)
10. 模型评估
best_model.eval()
epoch_test_acc, epoch_test_loss = test(test_dl, best_model, loss_fn)
epoch_test_acc, epoch_test_loss
11.改进
是否可以尝试通过增加/调整C3模块与Conv模块来提高准确率?
调整的代码部分:我选择增大卷积核大小和增加一个c3模块。
class model_K(nn.Module):
def __init__(self):
super(model_K, self).__init__()
# 卷积模块
self.Conv = Conv(3, 32, 5, 2) # 增大卷积核大小
# C3模块1
self.C3_1 = C3(32, 64, 3, 2)
# C3模块2
self.C3_2 = C3(32, 64, 3, 2) # 增加一个C3模块
# 全连接网络层,用于分类
self.classifier = nn.Sequential(
nn.Linear(in_features=802816, out_features=100),
nn.ReLU(),
nn.Linear(in_features=100, out_features=4)
)
12.总结
改进之后训练集准确率和损失有了明显的改善,但测试集变化不大 。