​第P7周:咖啡豆识别(VGG-16复现)

  •   🍨 本文为🔗365天深度学习训练营 中的学习记录博客
  • 🍖 原作者:K同学啊 | 接辅导、项目定制
    import torch
    import torch.nn as nn
    import torchvision.transforms as transforms
    import torchvision
    from torchvision import transforms, datasets
    import os,PIL,pathlib,warnings
    
    warnings.filterwarnings("ignore")             #忽略警告信息
    
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    import os,PIL,random,pathlib
    
    data_dir='./7-data/'
    data_dir=pathlib.Path(data_dir)
    data_paths=list(data_dir.glob('*'))
    classNames=[str(path).split("\\")[1]for path in data_paths]
    train_transforms=transforms.Compose([transforms.Resize([224,224]),transforms.ToTensor(),transforms.Normalize(mean=[0.485,0.456,0.406],std=[0.229,0.224,0.225])])
    test_transforms=transforms.Compose([transforms.Resize([224,224]),transforms.ToTensor(),transforms.Normalize(mean=[0.485,0.456,0.406],std=[0.229,0.224,0.225])])
    total_data = datasets.ImageFolder("./7-data/",transform=train_transforms)
    train_size=int(0.8 * len(total_data))
    test_size=len(total_data)-train_size
    train_dataset,test_dataset=torch.utils.data.random_split(total_data,[train_size,test_size])
    batch_size=32
    train_dl=torch.utils.data.DataLoader(train_dataset,batch_size=batch_size,shuffle=True,num_workers=1)
    test_dl=torch.utils.data.DataLoader(test_dataset,batch_size=batch_size,shuffle=True,num_workers=1)
    for X,y in test_dl:
        print("Shape of X[N,C,H,W]:",X.shape)
        print("shape of y:",y.shape,y.dtype)
        break
    import torch.nn.functional as F
    
    class vgg16(nn.Module):
        def __init__(self):
            super(vgg16, self).__init__()
            # 卷积块1
            self.block1 = nn.Sequential(
                nn.Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
                nn.ReLU(),
                nn.Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
                nn.ReLU(),
                nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2))
            )
            # 卷积块2
            self.block2 = nn.Sequential(
                nn.Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
                nn.ReLU(),
                nn.Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
                nn.ReLU(),
                nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2))
            )
            # 卷积块3
            self.block3 = nn.Sequential(
                nn.Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
                nn.ReLU(),
                nn.Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
                nn.ReLU(),
                nn.Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
                nn.ReLU(),
                nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2))
            )
            # 卷积块4
            self.block4 = nn.Sequential(
                nn.Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
                nn.ReLU(),
                nn.Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
                nn.ReLU(),
                nn.Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
                nn.ReLU(),
                nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2))
            )
            # 卷积块5
            self.block5 = nn.Sequential(
                nn.Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
                nn.ReLU(),
                nn.Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
                nn.ReLU(),
                nn.Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
                nn.ReLU(),
                nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2))
            )
            
            # 全连接网络层,用于分类
            self.classifier = nn.Sequential(
                nn.Linear(in_features=512*7*7, out_features=4096),
                nn.ReLU(),
                nn.Linear(in_features=4096, out_features=4096),
                nn.ReLU(),
                nn.Linear(in_features=4096, out_features=4)
            )
    
        def forward(self, x):
    
            x = self.block1(x)
            x = self.block2(x)
            x = self.block3(x)
            x = self.block4(x)
            x = self.block5(x)
            x = torch.flatten(x, start_dim=1)
            x = self.classifier(x)
    
            return x
    
    device = "cuda" if torch.cuda.is_available() else "cpu"
    print("Using {} device".format(device))
        
    model = vgg16().to(device)
    
    def train(dataloader, model, loss_fn, optimizer):
        size = len(dataloader.dataset)  # 训练集的大小
        num_batches = len(dataloader)   # 批次数目, (size/batch_size,向上取整)
    
        train_loss, train_acc = 0, 0  # 初始化训练损失和正确率
        
        for X, y in dataloader:  # 获取图片及其标签
            X, y = X.to(device), y.to(device)
            
            # 计算预测误差
            pred = model(X)          # 网络输出
            loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
            
            # 反向传播
            optimizer.zero_grad()  # grad属性归零
            loss.backward()        # 反向传播
            optimizer.step()       # 每一步自动更新
            
            # 记录acc与loss
            train_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()
            train_loss += loss.item()
                
        train_acc  /= size
        train_loss /= num_batches
    
        return train_acc, train_loss
    
    def test (dataloader, model, loss_fn):
        size        = len(dataloader.dataset)  # 测试集的大小
        num_batches = len(dataloader)          # 批次数目, (size/batch_size,向上取整)
        test_loss, test_acc = 0, 0
        
        # 当不进行训练时,停止梯度更新,节省计算内存消耗
        with torch.no_grad():
            for imgs, target in dataloader:
                imgs, target = imgs.to(device), target.to(device)
                
                # 计算loss
                target_pred = model(imgs)
                loss        = loss_fn(target_pred, target)
                
                test_loss += loss.item()
                test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()
    
        test_acc  /= size
        test_loss /= num_batches
    
        return test_acc, test_loss
    import copy
    
    optimizer  = torch.optim.Adam(model.parameters(), lr= 1e-4)
    loss_fn    = nn.CrossEntropyLoss() # 创建损失函数
    
    epochs     = 40
    
    train_loss = []
    train_acc  = []
    test_loss  = []
    test_acc   = []
    
    best_acc = 0    # 设置一个最佳准确率,作为最佳模型的判别指标
    
    for epoch in range(epochs):
        
        model.train()
        epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, optimizer)
        
        model.eval()
        epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
        
        # 保存最佳模型到 best_model
        if epoch_test_acc > best_acc:
            best_acc   = epoch_test_acc
            best_model = copy.deepcopy(model)
        
        train_acc.append(epoch_train_acc)
        train_loss.append(epoch_train_loss)
        test_acc.append(epoch_test_acc)
        test_loss.append(epoch_test_loss)
        
        # 获取当前的学习率
        lr = optimizer.state_dict()['param_groups'][0]['lr']
        
        template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr:{:.2E}')
        print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, 
                              epoch_test_acc*100, epoch_test_loss, lr))
        
    # 保存最佳模型到文件中
    PATH = './best_model.pth'  # 保存的参数文件名
    torch.save(model.state_dict(), PATH)
    
    print('Done')
    
    import matplotlib.pyplot as plt
    #隐藏警告
    import warnings
    warnings.filterwarnings("ignore")               #忽略警告信息
    plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
    plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
    plt.rcParams['figure.dpi']         = 100        #分辨率
    
    epochs_range = range(epochs)
    
    plt.figure(figsize=(12, 3))
    plt.subplot(1, 2, 1)
    
    plt.plot(epochs_range, train_acc, label='Training Accuracy')
    plt.plot(epochs_range, test_acc, label='Test Accuracy')
    plt.legend(loc='lower right')
    plt.title('Training and Validation Accuracy')
    
    plt.subplot(1, 2, 2)
    plt.plot(epochs_range, train_loss, label='Training Loss')
    plt.plot(epochs_range, test_loss, label='Test Loss')
    plt.legend(loc='upper right')
    plt.title('Training and Validation Loss')
    plt.show()
    
    from PIL import Image 
    
    classes = list(total_data.class_to_idx)
    
    def predict_one_image(image_path, model, transform, classes):
        
        test_img = Image.open(image_path).convert('RGB')
        plt.imshow(test_img)  # 展示预测的图片
    
        test_img = transform(test_img)
        img = test_img.to(device).unsqueeze(0)
        
        model.eval()
        output = model(img)
    
        _,pred = torch.max(output,1)
        pred_class = classes[pred]
        print(f'预测结果是:{pred_class}')
    
    predict_one_image(image_path='./7-data/Dark/dark (1).png', 
                      model=model, 
                      transform=train_transforms, 
                      classes=classes)
    
    best_model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, best_model, loss_fn)
    
    epoch_test_acc, epoch_test_loss

  • 总结:加油

  • 30
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
VGG-16是一种卷积神经网络模型,用于图像识别任务。猫狗识别是指利用计算机视觉技术对图像中的猫和狗进行分类和识别的任务。 VGG-16模型是由牛津大学的研究团队于2014年提出的。该模型的名称VGG是VGGNet的缩写,其中16表示该模型有16个卷积层和全连接层。VGG-16模型通过一系列的卷积层和池化层来提取图像的特征,然后通过全连接层和Softmax分类器对提取的特征进行分类。 对于猫狗识别任务,首先需要准备一个具有大量猫和狗图像的数据集,并标记每个图像的类别。将这个数据集划分为训练集和测试集。 然后,使用VGG-16模型对训练集的图像进行训练,通过反向传播算法不断优化模型的权重参数,使其能够准确地识别猫和狗。在训练过程中,可以使用一些优化技巧,如学习率调整、数据增强等,来提高模型的性能和鲁棒性。 训练完成后,使用训练好的模型对测试集的图像进行分类预测。将预测结果与实际标签进行比较,计算准确率和其他评价指标来评估模型的性能。 通过以上步骤,可以利用VGG-16模型对猫和狗的图像进行准确的分类识别。然而,模型的性能可能会受数据集的质量和多样性、模型的超参数设置等因素的影响。因此,在实际应用中,可以根据具体需求对模型进行调优,并采用一些先进的方法来进一步提高识别的准确性和泛化能力。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值