from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
# 导入鸢尾花数据集
iris_dataset = load_iris()
# 切分训练数据和测试数据
X_train, X_test, y_train, y_test = train_test_split(iris_dataset['data'], iris_dataset['target'], random_state=42)
# 实例化 KNeighborsClassifier 类对象
knn = KNeighborsClassifier(n_neighbors=1)
# 构建模型(通过训练特征数据和训练标签数据进行拟合)
knn.fit(X_train, y_train)
# 模型评估
precision = knn.score(X_test, y_test)
print('精度得分:\n', precision)
# 新数据点
X_new = [[5, 2.9, 1, 0.2]]
# 模型预测
y_pred = knn.predict(X_new)
print('预测结果:\n', y_pred)
---------
精度得分:
1.0
预测结果:
[0]
使用 sklearn 构建机器学习算法模型的完整流程
最新推荐文章于 2024-11-02 10:09:29 发布