论文导读 | 图对齐

论文导读 | 图对齐

半监督图对齐

图对齐问题是将两个图的节点进行匹配的问题。而半监督图对齐指的是已知小部分节点之间的对应关系,通过学习获得其他节点的匹配关系。

问题定义如下:给定属性图 G 1 = { A 1 , X 1 } G_1 = \{A_1,X_1\} G1={A1,X1} G 2 = { A 2 , X 2 } G_2 = \{A_2,X_2\} G2={A2,X2}和锚节点对,输出相似矩阵 S S S S ( x , a ) S(x,a) S(x,a)表示 G 1 G_1 G1中结点 a a a G 2 G_2 G2中结点 x x x​的相似性。

解决这个问题常见方法有以下3种:consistency-based、embedding-based和optimal transport。

consistency-based method

consistency-based method基于拓扑结构的一致性假设,即如果在图 G 1 G_1 G1 a a a b b b是相邻节点,在图 G 2 G_2 G2 x x x y y y也是相邻节点,并且如果 a a a对齐到 x x x,那么很可能 b b b应该对齐到 y y y​​。目标函数如下:

$ O_ {c} (S)= \alpha
\sum _ {a,b,x,y} [\frac {S(x,a)}{\sqrt {d_ {2}(x)d_ {1}(a)}}-\frac {S(y,b)}{\sqrt {d_ {2}(y)d_ {1}(b)}}]^ {2} A_ {1} (a,b) A_ {2} (x,y)
+(1- \alpha )\parallel S- H\parallel_ {F}^ {2} $

其中 d ( ∙ ) d(\bullet) d()为结点的度数; H H H是先验对齐矩阵,有锚链接的条目为1,否则为0。

目标函数的显式解为 s ( i ) = ( 1 − α ) ∑ j = 0 n 2 × n 1 − 1 ∑ t = 0 ∞ α t W ^ t ( i , j ) 1 ( h ( j ) ) \mathbf{s}(i)=(1-\alpha) \sum_{j=0}^{n_2 \times n_1-1} \sum_{t=0}^{\infty} \alpha^t \hat{\mathbf{W}}^t(i, j) \mathbb{1}(\mathbf{h}(j)) s(i)=(1α)j=0n2×n11t=0αtW^t(i,j)1(h(j))

其中, W ^ = D W − 1 2 W D W − 1 2 \hat{\mathbf{W}}=\mathrm{D}_{\mathrm{W}}^{-\frac{1}{2}} \mathbf{W D}_{\mathrm{W}}^{-\frac{1}{2}} W^=DW21WDW21并且 W = A 1 ⊗ A 2 \mathbf{W}=\mathbf{A}_1 \otimes \mathbf{A}_2 W=A1A2。所以 W ^ t ( i , j ) 1 ( h ( j ) ) \hat{\mathbf{W}}^t(i, j) \mathbb{1}(\mathbf{h}(j)) W^t(i,j)1(h(j))表示锚点对 j j j经过 t t t步移动到 i i i s ( i ) \mathbf{s}(i) s(i)是锚点对在product graph随机游走,以 α \alpha α​概率消减赋值,得到的和。

consistency-based方法有以下两个局限性:

一、然而,由于网络的异质性,这种一致性假设很可能会被违反。例如,用户可能在一个社交网络中表现活跃,而在另一个社交网络中表现安静。上述公式要求,只有当锚链的两个锚节点以完全相同的步长 t t t到达给定节点对时,才能给结点对赋值。所以即使是很小的扰动也可能对结果产生巨大的影响。

二、上述公式可能产生过平滑的问题。

embedding-based

BRIGHT[1]模型在consistency-based方法的基础上获得结点embedding。BRIGHT使用RWR算法求得 R 1 R_1 R1embedding矩阵,公式为 r l 1 = ( 1 − β ) W ^ 1 r l 1 + β e l 1 \mathbf{r}_{l_1}=(1-\beta) \hat{\mathbf{W}}_1 \mathbf{r}_{l_1}+\beta \mathbf{e}_{l_1} rl1=(1β)W^1rl1+βel1。这样避免了步长相同的限制,给随机行走过程带来了更大的灵活性,更具鲁棒性。然后经过线性层获得拓扑结构相关的node embedding,这是为了让两个图嵌入到同一个空间。在这里插入图片描述

BRIGHT使用marginal ranking loss, J i = 1 ∣ L ∣ ∑ l ∈ L 1 ∣ U l i ∣ ∑ u ∈ U l i max ⁡ { 0 , γ + d ( l 1 , l 2 ) − d ( l i , u ) } \mathcal{J}_i=\frac{1}{|\mathcal{L}|} \sum_{l \in \mathcal{L}} \frac{1}{\left|U_{l_i}\right|} \sum_{u \in U_{l_i}} \max \left\{0, \gamma+d\left(l_1, l_2\right)-d\left(l_i, u\right)\right\} Ji=L1lLUli1uUlimax{0,γ+d(l1,l2)d(li,u)}。其中 U l i U_{l_i} Uli是节点 l i l_i li的负对抽样集。为了提高负采样的质量和对齐性能,我们采样 G 2 G_2 G2中与锚节点 l 1 l_1 l1 G 1 G_1 G1中的嵌入最接近的节点作为下一个epoch的负样例。


NextAlign[2]在建模结点embedding和采样两个方面对BRIGHT做出改进。

NextAlign在RWR和线性层中间增加了RelGCN-U和注意力机制。RelGCN-U是合并两个图并在大图上进行消息传递,这是为了更好地建模两个图之间的交互关系。注意力机制是为了解决区域之间对齐分数一致的过平滑问题(例如图中的点 g g g和点 f f f)。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

损失函数如下:

J a = − ∑ b [ p d ( b ∣ a ) log ⁡ σ ( b ′ a ) + k p n ( b ∣ a ) log ⁡ σ ( − b ′ a ) ] J x = − ∑ y [ p d ( y ∣ x ) log ⁡ σ ( y ′ x ) + k p n ( y ∣ x ) log ⁡ σ ( − y ′ x ) ] J a x = − ∑ b [ p d c ( b ∣ x ) log ⁡ σ ( b ′ x ) + k p n c ( b ∣ x ) log ⁡ σ ( − b ′ x ) ] − ∑ y [ p d c ( y ∣ a ) log ⁡ σ ( y ′ a ) + k p n c ( y ∣ a ) log ⁡ σ ( − y ′ a ) ] J = ∑ ( a , x ) ∈ L J ( a , x ) = ∑ ( a , x ) ∈ L J a + J x + J a x \begin{aligned} J_a & =-\sum_b\left[p_d(b \mid a) \log \sigma\left(\mathbf{b}^{\prime} \mathbf{a}\right)+k p_n(b \mid a) \log \sigma\left(-\mathbf{b}^{\prime} \mathbf{a}\right)\right] \\ J_x & =-\sum_y\left[p_d(y \mid x) \log \sigma\left(\mathbf{y}^{\prime} \mathbf{x}\right)+k p_n(y \mid x) \log \sigma\left(-\mathbf{y}^{\prime} \mathbf{x}\right)\right] \\ J_{a x} & =-\sum_b\left[p_{d c}(b \mid x) \log \sigma\left(\mathbf{b}^{\prime} \mathbf{x}\right)+k p_{n c}(b \mid x) \log \sigma\left(-\mathbf{b}^{\prime} \mathbf{x}\right)\right] \\ & -\sum_y\left[p_{d c}(y \mid a) \log \sigma\left(\mathbf{y}^{\prime} \mathbf{a}\right)+k p_{n c}(y \mid a) \log \sigma\left(-\mathbf{y}^{\prime} \mathbf{a}\right)\right] \\ J & =\sum_{(a, x) \in \mathcal{L}} J_{(a, x)}=\sum_{(a, \mathbf{x}) \in \mathcal{L}} J_a+J_x+J_{a x}\end{aligned} JaJxJaxJ=b[pd(ba)logσ(ba)+kpn(ba)logσ(ba)]=y[pd(yx)logσ(yx)+kpn(yx)logσ(yx)]=b[pdc(bx)logσ(bx)+kpnc(bx)logσ(bx)]y[pdc(ya)logσ(ya)+kpnc(ya)logσ(ya)]=(a,x)LJ(a,x)=(a,x)LJa+Jx+Jax

在抽样负样本 p n c p_{nc} pnc​​​的时候,一些方法主张抽样embedding相近的结点,然而这违反对齐一致性假设;另一些方法主张抽样embedding相差较大的结点或者随机采样,这可能对学习有意义的嵌入贡献不大。

NextAlign为了解决这个问题,就将embedding分为两块,一块表示在本图的信息,一块表示在另一张图中的信息。在采样的时候使用不同部分的信息。公式如下:

p d ( b ∣ a ) = σ ( b ( 1 ) ′ x ( 1 ) ) ∑ c ∈ V 1 σ ( c ( 1 ) ′ x ( 1 ) ) p n ( b ∣ a ) = σ ( − b ( 1 ) ′ x ( 1 ) ) ∑ c ∈ V 1 σ ( − c ( 1 ) ′ x ( 1 ) ) p d c ( b ∣ x ) = σ ( b ( 2 ) ′ x ( 2 ) ) ∑ c ∈ V 1 σ ( c ( 2 ) ′ x ( 2 ) ) p n c ( b ∣ x ) = σ ( b ( 1 ) ′ x ( 2 ) + b ( 2 ) ′ x ( 1 ) ) ∑ c ∈ V 1 σ ( c ( 1 ) ′ x ( 2 ) + c ( 2 ) ′ x ( 1 ) ) \begin{aligned} p_d(b \mid a) & =\frac{\sigma\left(\mathbf{b}_{(1)}^{\prime} \mathbf{x}_{(1)}\right)}{\sum_{c \in \mathcal{V}_1} \sigma\left(\mathbf{c}_{(1)}^{\prime} \mathbf{x}_{(1)}\right)} \\ p_n(b \mid a) & =\frac{\sigma\left(-\mathbf{b}_{(1)}^{\prime} \mathbf{x}_{(1)}\right)}{\sum_{c \in \mathcal{V}_1} \sigma\left(-\mathbf{c}_{(1)}^{\prime} \mathbf{x}_{(1)}\right)} \\ p_{d c}(b \mid x) & =\frac{\sigma\left(\mathbf{b}_{(2)}^{\prime} \mathbf{x}_{(2)}\right)}{\sum_{c \in \mathcal{V}_1} \sigma\left(\mathbf{c}_{(2)}^{\prime} \mathbf{x}_{(2)}\right)} \\ p_{n c}(b \mid x) & =\frac{\sigma\left(\mathbf{b}_{(1)}^{\prime} \mathbf{x}_{(2)}+\mathbf{b}_{(2)}^{\prime} \mathbf{x}_{(1)}\right)}{\sum_{c \in \mathcal{V}_1} \sigma\left(\mathbf{c}_{(1)}^{\prime} \mathbf{x}_{(2)}+\mathbf{c}_{(2)}^{\prime} \mathbf{x}_{(1)}\right)}\end{aligned} pd(ba)pn(ba)pdc(bx)pnc(bx)=cV1σ(c(1)x(1))σ(b(1)x(1))=cV1σ(c(1)x(1))σ(b(1)x(1))=cV1σ(c(2)x(2))σ(b(2)x(2))=cV1σ(c(1)x(2)+c(2)x(1))σ(b(1)x(2)+b(2)x(1))

optimal transport

optimal transport把相似矩阵的计算建模为最优传输问题。
S = arg ⁡ min ⁡ S ∈ Π ( μ , v ) ∑ x i , y j C ( x i , y j ) S ( x i , y j ) = arg ⁡ min ⁡ S ∈ Π ( μ , v ) ⟨ C , S ⟩ \mathbf{S}=\underset{\mathbf{S} \in \Pi(\boldsymbol{\mu}, \boldsymbol{v})}{\arg \min } \sum_{x_i, y_j} \mathbf{C}\left(x_i, y_j\right) \mathbf{S}\left(x_i, y_j\right)=\underset{\mathbf{S} \in \Pi(\boldsymbol{\mu}, \boldsymbol{v})}{\arg \min }\langle\mathbf{C}, \mathbf{S}\rangle S=SΠ(μ,v)argminxi,yjC(xi,yj)S(xi,yj)=SΠ(μ,v)argminC,S
μ = 1 n 1 n 1 , v = 1 n 2 n 2 \mu=\frac{1_{n_1}}{n_1}, \boldsymbol{v}=\frac{1_{n_2}}{n_2} μ=n11n1,v=n21n2
其中 C C C是代价矩阵, S S S是相似矩阵。

PARROT[3]除此之外,还设计了3个正则化项。

一、edge consistency regularization:两个对齐结点之间的连边embedding通常比较相似

L e = ∑ x , x ′ , y , y ′ L e ( x , x ′ , y , y ′ ) = ∑ x , y x ′ ∈ N ( x ) , y ′ ∈ N ( y ) ∣ C 1 ( x , x ′ ) − C 2 ( y , y ′ ) ∣ 2 S ( x , y ) S ( x ′ , y ′ ) \begin{aligned} L_e & =\sum_{x, x^{\prime}, y, y^{\prime}} \mathbf{L}_e\left(x, x^{\prime}, y, y^{\prime}\right) \\ & =\sum_{\substack{x, y \\ x^{\prime} \in \mathcal{N}(x), y^{\prime} \in \mathcal{N}(y)}}\left|\mathbf{C}_1\left(x, x^{\prime}\right)-\mathbf{C}_2\left(y, y^{\prime}\right)\right|^2 \mathbf{S}(x, y) \mathbf{S}\left(x^{\prime}, y^{\prime}\right)\end{aligned} Le=x,x,y,yLe(x,x,y,y)=x,yxN(x),yN(y)C1(x,x)C2(y,y)2S(x,y)S(x,y)
C i C_i Ci是边embedding矩阵, C i = e − X i X i ⊤ ⊙ A i \mathbf{C}_i=e^{-\mathbf{X}_i \mathbf{X}_i^{\top}} \odot \mathbf{A}_i Ci=eXiXiAi

二、neighborhood consistency:相同邻域的相似度相近

L n = − ⟨ log ⁡ S ^ , S ⟩ + ⟨ log ⁡ S , S ⟩ L_n=-\langle\log \hat{\mathbf{S}}, \mathbf{S}\rangle+\langle\log \mathbf{S}, \mathbf{S}\rangle Ln=logS^,S+logS,S
其中 S ^ \hat{\mathbf{S}} S^表示的是局部相似度信息

三、S和先验分布相近
L a = − ⟨ log ⁡ H , S ⟩ + ⟨ log ⁡ S , S ⟩ L_a=-\langle\log \mathbf{H}, \mathrm{S}\rangle+\langle\log \mathrm{S}, \mathrm{S}\rangle La=logH,S+logS,S
其中 H H H是先验相似矩阵, H ( x , y ) = 1 ∣ f ∣ \mathbf{H}(x, y)=\frac{1}{|\mathcal{f}|} H(x,y)=f1,当且仅当 ( x , y ) ∈ L (x, y) \in \mathcal{L} (x,y)L​。

最终的优化公式为 min ⁡ S ∈ Π ( μ , v ) f ( S ) = ⟨ C , S ⟩ + λ e L e + λ n L n + λ a L a \min _{\mathbf{S} \in \Pi(\boldsymbol{\mu}, \boldsymbol{v})} f(\mathbf{S})=\langle\mathbf{C}, \mathbf{S}\rangle+\lambda_e L_e+\lambda_n L_n+\lambda_a L_a minSΠ(μ,v)f(S)=C,S+λeLe+λnLn+λaLa。可以将其转化为凸优化问题并通过近似点算法进行求值。

Reference

[1] Yan, Y., Zhang, S., & Tong, H. (2021). BRIGHT: A Bridging Algorithm for Network Alignment. Proceedings of the Web Conference 2021.

[2] Zhang, S., Tong, H., Jin, L., Xia, Y., & Guo, Y. (2021). Balancing Consistency and Disparity in Network Alignment. Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining.

[3] Zeng, Z., Zhang, S., Xia, Y., & Tong, H. (2023). PARROT: Position-Aware Regularized Optimal Transport for Network Alignment. Proceedings of the ACM Web Conference 2023.

  • 34
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值