论文导读|《Exploiting Rich Syntactic Information for Semantic Parsing with Graph-to-Sequence Model》

北京大学 张欣博
在这里插入图片描述
原文《Exploiting Rich Syntactic Information for Semantic Parsing with Graph-to-Sequence Model》收录于EMNLP2018

语义解析(Semantic Parsing)将文本转化为逻辑形式或结构化查询(text2logicform),已有很多神经网络方法,学习文本和逻辑形式之间的软对齐进行语义解析,但是大多这类方法通常都是在decoder端的改进,而encoder端常采用简单的序列LSTM进行编码,只考虑词序特征(word-order),忽视了有用的句法信息(syntactic features)。
在这里插入图片描述

Constituency Parsing成分句法分析
成份句法分析将文本拆分成子短语,可以视为一棵树,非叶子结点是短语的类型,叶子结点是句子中的短语,边上不需额外标签。
在这里插入图片描述

Dependency Parsing依存句法分析
依存句法分析将句子解析成语法树,树中的每个节点代表一个单词,子节点是依存于父节点的,边的标签由节点之间的关系定义。
在这里插入图片描述

本文引入引入句法图( syntactic graph)的概念,句法图包含了以下三种类型的信息:
• 词序 word order
• 成分句法 constituency feature
• 依存句法 dependency feature
在这里插入图片描述

如上给出了句法图的示例。首先将句子里每个单词是一个节点,节点间进行双向互相连接,这样体现了word-order特征。接着根据dependency解析树的结果,将单词之间以有向边连接并指向依赖标签,即加入了dependency特征,代表了单词之间的语法依赖关系。根据constituency解析的结果,把constituent tree中非终止节点以及它们之间的边加入到syntactic graph中,以此体现了句子的constituency特征。
在这里插入图片描述

实验在Semantic Parsing的几个Benchmark数据集Jobs640,ATIS和Geo880上进行。使用graph2seq模型(Xu et al. 2018),首先使用graph encoder对syntactic graph进行编码,而后使用RNN+Attention进行解码得到Logical Form。为验证Graph2Seq的有效性,还设计了如下的baseline:用SeqLSTM提取词序信息,用TreeLSTM提取dependency和constituency特征,将这两个模型(词序、语义)的输出都流入到解码器中。
在这里插入图片描述

同时对模型进行了鲁棒性的研究,在实验中交换了句子中某些字母,制造“笔误” (swap noise)。
实验结果发现:
1、当这类情况增多时,算法效果降低
2、当这类情况增多时,用三种特征会使算法能力削弱得更慢
3、由于序列特征依赖词序,swap noise对单用这类特征的算法影响最大
在这里插入图片描述

Bert是一种在自然语言处理中被广泛使用的模型,其在各种任务中表现出了出色的性能。然而,对于方面级情感分析,Bert并不直接适用。因此,需要对Bert进行利用,并通过修改和扩展来适应这一任务。 端到端(end-to-end)的方面级情感分析是指通过一个模型直接从文本中提取方面和情感信息。为了利用Bert进行端到端的方面级情感分析,首先需要对数据进行预处理,并将其转换成Bert模型所接受的输入格式。这包括将文本分段、添加特殊标记以及填充序列等操作。 在Bert模型的基础上,需要添加相关的层来实现方面级情感分析。一种常见的方法是利用注意力机制来捕获方面词与其他词之间的关系。通过计算不同词之间的注意力权重,可以将方面词的相关信息传递给其他词,从而更好地理解整个文本。另外,也可以添加一些分类层来预测每个方面的情感。 为了更好地利用Bert,还可以使用领域特定的语料库来进行预训练。通过在大规模的语料库上进行预训练,模型可以更好地理解特定领域的文本,并提升方面级情感分析的性能。 此外,还可以通过调整Bert模型的超参数来进一步改善性能。例如,可以调整学习率、批大小和训练周期等超参数,以获得更好的结果。 总之,“exploiting bert for end-to-end aspect-based sentiment analysis”意味着通过对Bert进行修改和扩展,将其应用于端到端的方面级情感分析任务中,以提升模型的性能和效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值