LLM+RAG:AI生成测试用例智能体平台「详细介绍」

1. 系统概述

AI生成测试用例智能体平台是一款基于人工智能技术的测试用例自动生成工具,利用RAG(检索增强生成)技术,能够结合项目相关知识文档和历史用例,智能生成高质量的测试用例。本平台适用于测试团队快速创建测试用例,提高测试效率和质量。

在这里插入图片描述

主要功能

  • 自动从需求文本生成结构化测试用例
  • 支持多种文档格式的知识库导入和检索
  • 结合历史用例和知识文档增强测试用例生成质量
  • 支持多种AI大语言模型接入(本地、线上)
  • 提供多种用例导出格式(Excel、JSON、Markdown)

2. 安装与配置

系统要求

  • Python 3.8+
  • 操作系统:Windows 10/11、macOS、Linux

安装步骤

  1. 克隆或下载项目代码

    https://xxx.git (项目源码可我联系获取)
    cd rag_testcase_plafform
    
  2. 创建并激活虚拟环境

    # Windows
    python -m venv venv
    .\venv\Scripts\activate
    
    # Linux/macOS
    python -m venv venv
    source venv/bin/activate
    
  3. 安装依赖包

    pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
    
  4. 安装Ollama(默认本地模型,可选)
    Ollama官网下载并安装最新版本

  5. 下载模型(使用Ollama时)

    ollama pull qwen2.5:7b
    
  6. 启动应用

    streamlit run rag_test_agent.py
    

3. 界面介绍

应用启动后会在浏览器中打开,界面分为三个主要标签页:

3.1 生成测试用例 (📝)

左侧区域用于输入需求描述和配置生成参数,右侧显示知识库状态。

在这里插入图片描述

3.2 知识库管理 (📚)

用于上传和管理知识文档,查看已有知识库内容。

在这里插入图片描述

3.3 模型设置 (⚙️)

配置AI模型类型、参数和API连接信息。
在这里插入图片描述

在这里插入图片描述

4. 生成测试用例

4.1 输入需求描述

有两种方式输入需求描述:

  • 在文本框中直接输入或粘贴
    在这里插入图片描述

  • 上传需求文档(支持PDF、Word、TXT、Markdown、JSON格式)
    在这里插入图片描述

4.2 配置生成参数

  • 生成最大用例数量:设置需要生成的测试用例数量(5-200个)
    在这里插入图片描述

  • AI创造性(Temperature):控制生成结果的随机性(0.1-1.0)

    • 较低值(如0.3):生成更保守、一致的结果
    • 较高值(如0.8):生成更多样化、创新的结果
      在这里插入图片描述
  • 使用知识库和历史用例增强:勾选此选项结合已有知识库和历史用例生成更贴合场景的测试用例
    在这里插入图片描述

4.3 生成测试用例

  1. 确认输入和参数后,点击"🚀 生成测试用例"按钮
    在这里插入图片描述

  2. 系统首先会从知识库中搜索相关信息(如启用了增强功能)

  3. 调用AI模型生成测试用例

  4. 生成完成后显示结果,并自动保存到历史记录中
    在这里插入图片描述

  5. 点击导出按钮,可直接导出Excel测试用例
    在这里插入图片描述
    在这里插入图片描述

4.4 查看生成结果

结果以四种形式展示:

  • 表格视图:以表格形式显示测试用例
  • JSON数据:原始JSON格式数据
  • 统计信息:如优先级分布等统计图表
  • 导出文件:提供JSON和Markdown两种导出选项
    在这里插入图片描述

5. 知识库管理

5.1 上传知识文档

  1. 切换到"📚 知识库管理"标签页
  2. 上传文档(支持PDF、Word、TXT、Markdown、JSON格式)
  3. 点击"处理文档"按钮
  4. 系统会自动分析文档内容并提取知识段落
  5. 处理完成后显示提取的段落数量
    在这里插入图片描述

5.2 查看知识库内容

  • 选择特定文档或查看所有文档
  • 系统显示知识段落内容,包括所属文档和页码信息
  • 默认显示前20条记录,若数量较多会提示总数
    在这里插入图片描述

6. 模型设置

6.1 选择模型提供商

  • Ollama:本地部署模型,默认选项
  • OpenAI:使用OpenAI API服务
  • Custom:自定义API服务
    在这里插入图片描述

6.2 配置模型参数

根据选择的提供商配置相应参数:

Ollama
  • 模型名称:选择可用的本地模型(qwen2.5:7b、llama3、mixtral等)
  • API Base URL:默认为http://127.0.0.1:11434,本地Ollama服务地址
    在这里插入图片描述
OpenAI
  • 模型名称:选择OpenAI提供的模型(gpt-4、gpt-3.5-turbo等)
  • API Key:输入OpenAI API密钥
  • API Base URL:默认为https://api.openai.com
    在这里插入图片描述
Custom
  • 自定义模型名称:输入自定义模型名称
  • API Key:输入API密钥(如需要)
  • API Base URL:输入自定义API服务地址
    在这里插入图片描述

7. 导出功能

7.1 导出为JSON

  1. 生成测试用例后,切换到"导出文件"标签
  2. 点击"导出为JSON"按钮下载JSON格式文件
    在这里插入图片描述

7.2 导出为Markdown

  1. 生成测试用例后,切换到"导出文件"标签
  2. 点击"导出为Markdown"按钮下载Markdown格式文件
  3. 可在"Markdown预览"中查看导出效果
    在这里插入图片描述

Markdown格式包含:

  • 需求描述
  • 测试用例列表(带编号和链接)
  • 每个测试用例的详细信息(优先级、前置条件、测试步骤和预期结果)
    在这里插入图片描述
  1. 导出md文件后,在xmind中导入,进行用例评审
    在这里插入图片描述

8. 常见问题解答

8.1 生成的测试用例质量不高

  • 确保提供详细、明确的需求描述
  • 上传与需求相关的知识文档到知识库
  • 调整AI创造性参数,尝试不同的值
  • 勾选"使用知识库和历史用例增强"选项

8.2 模型连接失败

  • Ollama模型:确认Ollama服务已启动且能访问(默认地址:http://127.0.0.1:11434)
  • OpenAI模型:验证API密钥是否正确
  • 检查网络连接是否正常

8.3 文档上传失败

  • 确认文档格式是否支持(PDF、Word、TXT、Markdown、JSON)
  • 检查文档是否损坏或加密
  • 尝试将文档分割为更小的文件

9. 最佳实践

9.1 提高测试用例生成质量

  • 提供详细需求:包含功能细节、业务规则和边界条件
  • 充实知识库:上传项目文档、产品规格说明、原型设计等
  • 迭代优化:基于生成结果调整需求描述,多次迭代

9.2 知识库管理建议

  • 定期更新知识库文档,确保内容最新
  • 上传针对特定功能的专业文档,提高相关性
  • 对于大型文档,考虑分割后上传,提高处理效率

9.3 效率提升技巧

  • 先用较低的用例数量生成,查看质量后再增加数量
  • 利用导出功能与测试管理工具集成
  • 在团队间共享和复用知识库,避免重复工作

通过本文档,相信你应能够快速上手LLM+RAG的生成测试用例智能体平台,高效地生成和管理测试用例。如有更多问题或建议,请及时联系我。

<think>好的,用户想了解如何基于RAG模型来编写AI测试用例的设计与实现方法。首先,我需要回忆一下RAG的基本概念和工作流程。RAG结合了检索和生成,通过检索外部知识库来增强生成内容的相关性和准确性,这在测试用例生成中应该能提高覆盖率和有效性。 根据用户提供的引用资料,引用[1]提到了RAG测试用例生成中的应用示,比如需求解析和场景扩展。而引用[2]则介绍了基于LangChain的工具开发,可能涉及模块化设计或知识库构建。我需要结合这些信息来构建回答。 首先,设计方法部分应该包括需求分析、知识库构建、检索策略和生成策略。需求分析需要将自然语言需求转化为结构化数据,可能需要NLP技术。知识库构建需要收集历史测试用例、需求文档等,并处理成向量形式以便检索。检索策略要选择合适的相似度算法,比如余弦相似度,来找到相关用生成策略要结合模板和LLM,确保用的多样性和准确性。 然后是实现步骤,可能需要分模块,比如需求解析模块、检索模块和生成模块。需求解析模块可能需要用LangChain的文本分割工具,检索模块用FAISS或Chroma,生成模块调用GPT-3等模型。还需要考虑评估指标,比如覆盖率、有效性和多样性。 接下来是应用示,用户可能需要具体的代码示,比如使用LangChain和FAISS的代码片段,展示从需求到生成的过程。最后的问题部分需要围绕用户可能遇到的难点和扩展应用来提问,比如知识库优化、评估方法、多语言支持等。 需要确保回答结构清晰,符合用户要求的步骤和方法,同时引用提供的资料。检查是否有遗漏的关键点,比如测试用例的评估指标和实际应用场景。还要注意使用正确的中文术语,避免技术术语错误,并保持语言自然流畅。</think>### 基于RAGAI测试用例设计与实现方法 #### 一、核心设计原理 1. **RAG模型架构** RAG(Retrieval-Augmented Generation)通过检索外部知识库增强生成结果的准确性和相关性,其数学表示为: $$P(y|x) = \sum_{z \in Z} P(z|x)P(y|x,z)$$ 其中$Z$为检索知识库,$x$为输入,$y$为输出[^1] 2. **测试用例生成流程** - 需求解析:将自然语言需求转换为结构化测试要素 - 知识检索:从测试知识库中匹配相似场景 - 生成优化:结合LLM生成最终测试用例 #### 二、具体实现步骤 1. **知识库构建** ```python # 使用LangChain构建测试知识库 from langchain.text_splitter import CharacterTextSplitter from langchain.vectorstores import FAISS documents = load_test_artifacts() # 加载历史用/需求文档 text_splitter = CharacterTextSplitter(chunk_size=500) chunks = text_splitter.split_documents(documents) vectorstore = FAISS.from_documents(chunks, embeddings) ``` 2. **检索增强生成** ```python def generate_testcase(requirement): # 1. 需求向量化 query_vector = embed(requirement) # 2. 相似度检索(余弦相似度) docs = vectorstore.similarity_search(query_vector, k=3) # 3. 上下文增强生成 prompt = f"基于需求:{requirement}\n参考案:{docs}" return llm.generate(prompt) # 调用大语言模型 ``` #### 三、关键优化策略 1. **混合检索策略** 结合语义检索($cos(\theta)$)与关键词检索(TF-IDF): $$score = \alpha \cdot sim_{semantic} + (1-\alpha) \cdot sim_{keyword}$$ 2. **动态模板机制** 根据测试类型自动选择模板: ```mermaid graph TD A[需求输入] --> B{测试类型判断} B -->|功能测试| C[等价类模板] B -->|性能测试| D[负载模型模板] B -->|安全测试| E[OWASP模板] ``` #### 四、质量评估指标 1. **覆盖率评估** 使用代码覆盖度矩阵验证: $$Coverage = \frac{执行路径数}{总路径数} \times 100\%$$ 2. **有效性验证** 通过缺陷检测率评估: $$Effectiveness = \frac{检测缺陷数}{总缺陷数} \times 100\%$$
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

blues_C

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值