OCR识别、模型训练等GPU环境安装配置(windows)

前提:显卡驱动正常。

第一步:查看本机cuda版本

1、打开命令行

2、输入nvidia-smi

3、查看对应的 cuda version

第二步:下载对应的CUDA并安装

1、CUDA Toolkit 11.1.0 | NVIDIA Developer

如果要选择其他版本,可以利用站内搜索功能进行查找。

 2、下载后安装,自定义安装过程中可以勾选组件,值得注意的是DisplayDriver组件 ,如果当前版本大于新版本,则去掉勾选。

第三步:下载对应的cuDNN

1、

<think>嗯,用户想了解PaddleOCR模型训练,首先我需要回忆一下PaddleOCR的基本信息。PaddleOCR是百度基于PaddlePaddle开发的OCR工具,对吧?支持多种任务,比如文本检测、识别和方向分类。用户可能想知道如何训练自己的模型,可能需要分步骤讲解。 首先,训练流程一般分为数据准备、配置调整、训练启动、评估和导出。数据准备这部分需要强调数据集的结构,可能用户不太清楚怎么组织数据,特别是对于中文场景。可能需要提到标注文件的格式,比如文本检测的标注是文本框坐标加文本内容,而识别可能只需要图片路径和文本。 然后是配置文件,这里用户可能会遇到问题,比如如何修改网络结构或调整超参数。得提醒他们注意配置文件中的关键参数,比如学习率、batch_size,还有预训练模型的路径。预训练模型的使用很重要,可以提升训练效果,特别是当用户的数据量不大时。 接着是启动训练的命令,要给出具体的代码示例,包括检测和识别的不同命令。可能用户会需要多GPU训练或者恢复训练的情况,这里也需要提到相关的参数,比如-o参数的作用。 评估和导出的步骤也不能少,用户训练完后肯定想测试模型效果,并导出成推理用的模型。评估命令和导出命令的例子要具体,避免他们混淆。 另外,调优技巧方面,数据增强和预训练模型是关键。特别是中文场景,可能需要用中文字符集的模型,比如MobileNetV3配合CRNN。如果用户的数据有垂直文本或弯曲文本,可能需要推荐不同的检测模型,比如DB++或SVTR。 还要注意常见问题,比如标注格式是否正确,配置文件路径是否正确,显存不足时的batch_size调整。这些是用户在实际操作中容易遇到的坑,提前提醒可以帮他们节省时间。 最后,总结一下整个流程,强调PaddleOCR的优势,比如多语言支持和预训练模型丰富,适合定制化需求。确保用户按照步骤操作能顺利完成训练。</think>PaddleOCR 训练流程分步解析(基于最新版本框架): 一、数据准备阶段 1. 数据集结构规范: $$ dataset_root/ ├── imgs/ # 图片目录 │ ├── img_1.jpg │ └── img_2.jpg └── train_list.txt # 标注文件 $$ 2. 标注文件格式示例: - 文本检测任务(四点坐标): $img_1.jpg\t [{"transcription": "文本内容", "points": [[x1,y1],[x2,y2],[x3,y3],[x4,y4]]}, ...]$ - 文本识别任务: $img_1.jpg\t 文本内容$ 二、配置文件调整 1. 修改关键参数(以文本识别模型为例): ```yaml Global: character_dict_path: ppocr/utils/ppocr_keys_v1.txt # 字符字典路径 pretrained_model: ./pretrain_models/rec_mv3_none_bilstm_ctc_v2.0_train # 预训练模型 Train: dataset: name: SimpleDataSet data_dir: ./train_data/ # 数据集根目录 label_file_list: ["./train_data/train_list.txt"] # 训练标注文件 loader: batch_size_per_card: 256 # 根据显存调整 num_workers: 8 Optimizer: name: Adam lr: name: Cosine learning_rate: 0.001 # 初始学习率 ``` 三、训练执行命令 1. 文本检测模型训练: ```bash python3 tools/train.py -c configs/det/det_mv3_db.yml \ -o Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained ``` 2. 文本识别模型训练: ```bash python3 tools/train.py -c configs/rec/rec_icdar15_train.yml \ -o Global.pretrained_model=./pretrain_models/rec_mv3_none_bilstm_ctc_v2.0_train ``` 四、关键调优技巧 1. 数据增强策略: - 颜色抖动:RandomColorAdjust(prob=0.5) - 几何变换:RandomRotateImage(max_angle=10) - 模糊处理:Blur(radius=2) 2. 中文场景优化建议: $$ \text{推荐模型组合} = \begin{cases} \text{检测:DB++} \\ \text{识别:CRNN + MobileNetV3} \\ \text{字典:覆盖中文字符集(6363类)} \end{cases} $$ 五、评估与导出 1. 模型评估: ```bash python3 tools/eval.py -c configs/rec/rec_r34_vd_none_bilstm_ctc.yml \ -o Global.checkpoints=./output/rec_vd/latest ``` 2. 推理模型导出: ```bash python3 tools/export_model.py -c configs/rec/rec_r34_vd_none_bilstm_ctc.yml \ -o Global.pretrained_model=./output/rec_vd/latest Global.save_inference_dir=./inference/rec ``` 常见问题解决方案: 1. 显存不足时:减小`batch_size_per_card`,启用AMP混合精度训练 2. 长文本识别:调整`max_text_length`参数,使用SVTR_tiny模型 3. 垂直文本检测:启用Rotated BBox模式,采用PP-PicoDet模型 最新特性支持: - 2023版新增PP-StructureV2文档分析 - 支持ONNX/TensorRT部署 - 提供200+预训练模型(包含80种语言) 建议通过AI Studio平台进行云端训练,可使用V100显卡加速。实际训练时建议先用1/10数据进行快速验证,再全量训练
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值