得到线性回归模型后,应当对模型进行诊断。意思就是,检查是否有以下不合理之处:
(相较于预测模型之前的数据清洗阶段,对于残差的评估,更像是一种验算阶段)
1. 非线性
可以通过散点图来诊断,因为ei以及消除掉源数据中的线性趋势,理想情况下ei应该为大致同一大小,否则可以判断为非线性。
2. 忽略重要变量
可以将ei和所有排除的特征做散点图,如果发现他们存在关联,则说明此特征是被忽略的。
3. 误差方差不定
可以通过散点图来诊断,其实原理和非线性相似,方差不定通常是由非线性引起的。
4. 误差间独立性
可以通过散点图来诊断,这对于处理时间序列与空间计量尤为好用。因为日期通常无法视为变量分析,我们甚至可以将日期或者坐标作为索引值i,由此可以在散点图上看到残差彼此间的联系。
5. 误差非正态分布(误差非噪音)
我在CSDN上找到了比较具体的帖子: