学习笔记:Model Diagnostics-模型诊断(线性回归)

得到线性回归模型后,应当对模型进行诊断。意思就是,检查是否有以下不合理之处:

(相较于预测模型之前的数据清洗阶段,对于残差的评估,更像是一种验算阶段)

1. 非线性

可以通过散点图(e_i,\widehat{y_i})来诊断,因为ei以及消除掉源数据中的线性趋势,理想情况下ei应该为大致同一大小,否则可以判断为非线性。

2. 忽略重要变量

可以将ei和所有排除的特征做散点图,如果发现他们存在关联,则说明此特征是被忽略的。

3. 误差方差不定

可以通过散点图(e_i,\widehat{y_i})来诊断,其实原理和非线性相似,方差不定通常是由非线性引起的。

4. 误差间独立性

可以通过散点图(e_i,i)来诊断,这对于处理时间序列与空间计量尤为好用。因为日期通常无法视为变量分析,我们甚至可以将日期或者坐标作为索引值i,由此可以在散点图上看到残差彼此间的联系。

5. 误差非正态分布(误差非噪音)

我在CSDN上找到了比较具体的帖子:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值