隐函数求导和相关变化率

8.隐函数求导和相关变化率

8.1 隐函数求导


当对 x x x 稍作改变时,量 x 2 x^2 x2 会有多大变化
分母 d x dx dx 告诉我们这是在关于 x x x 求导

当对 x x x 稍作改变时,量 y 2 y^2 y2 会有多大变化
分母 d x dx dx 告诉我们这是在关于 x x x 求导

8.1.1 技巧和例子

例1:

例2:


例3:


隐函数求导的技巧:


8.1.2 隐函数求二阶导

一阶导的平方: ( d y d x ) ( d y d x ) = ( d y d x ) 2 (\frac{dy}{dx})(\frac{dy}{dx})=(\frac{dy}{dx})^2 (dxdy)(dxdy)=(dxdy)2

二阶导: d d x ( d y d x ) = d 2 y d x 2 \frac{d}{dx}(\frac{dy}{dx})=\frac{d^2y}{dx^2} dxd(dxdy)=dx2d2y

技巧:如果需要的只是特定点上的导数,可以在整理关于 d y d x = ( . . . ) \frac{dy}{dx}=(...) dxdy=(...)的式子前,直接用数值替换(从而省去整理式子的时间)

8.2 相关变化率




求解相关变化率问题的一般方法:

例子:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Uncertainty!!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值