指数函数、对数函数、双曲函数

本文深入探讨了指数函数、对数函数和双曲函数的基础知识,包括它们的性质、互为反函数的关系、e的定义及其与复利的关系。同时,介绍了这些函数在求导、极限计算以及实际问题(如指数增长和衰变)中的应用。此外,还详细阐述了双曲函数的定义、性质和与三角函数的联系。通过对这些概念的解析,有助于读者理解和掌握这些重要的数学工具。
摘要由CSDN通过智能技术生成

Chapter9:指数函数、对数函数、双曲函数

9.指数函数、对数函数、双曲函数

9.1 基础知识

9.1.1 指数函数回顾

底 数 指数 底数^{指数} 指数


9.1.2 对数函数回顾

y = 2 x = 8 y=2^x=8 y=2x=8
x = l o g 2 ( y ) = l o g 2 ( 8 ) = 3 x=log_2(y)=log_2(8)=3 x=log2(y)=log2(8)=3 代表着将2提升3个幂次才能得到8

l o g b ( y ) log_b(y) logb(y)是为了得到 y y y 必须将底数 b b b 提升某个(对数的结果)幂次

b l o g b ( y ) = y b^{log_b(y)}=y blogb(y)=y

要求必须 b > 1 , y > 0 b \gt 1,y \gt 0 b>1y>0
如果 b < 0 b \lt 0 b<0 ,例如 y = b x = ( − 1 ) 1 2 = − 1 < 0 y=b^x=(-1)^{\frac{1}{2}}=\sqrt{-1} \lt 0 y=bx=(1)21=1 <0
如果 b = 0 b=0 b=0,例如 0 x 0^x 0x(无意义)

如果 b = 1 b=1 b=1 ,例如: y = 1 x = 1 y=1^x=1 y=1x=1,x取任何值都成立,无价值

0 < b < 1 0 \lt b \lt 1 0<b<1,例如: y = ( 1 2 ) x = 2 − x y=(\frac{1}{2})^x=2^{-x} y=(21)x=2x l o g 1 2 ( y ) = − l o g 2 ( y ) log_{\frac{1}{2}}(y)=-log_2(y) log21(y)=log2(y)

l o g b ( y ) log_b(y) logb(y) 不可能将 b b b 提升为几次幂而得到一个负数或0,于是 y y y 不可能是负数或0

9.1.3 指数函数与对数函数互为反函数

f ( g ( x ) ) = x f(g(x))=x f(g(x))=x b l o g b ( x ) = x b^{log_b(x)}=x blogb(x)=x
g ( f ( x ) ) = x g(f(x))=x g(f(x))=x l o g b ( b x ) = x log_b(b^x)=x logb(bx)=x

9.1.4 对数法则

所有不同底数的对数函数其实互为常数倍

l o g b ( x ) = K l o g c ( x ) log_b(x)=Klog_c(x) logb(x)=Klogc(x) ,其中 K = 1 l o g c ( b ) K=\frac{1}{log_c(b)} K=logc(b)1

y = l o g c ( x ) y=log_c(x) y=logc(x)图像垂直拉伸K倍得到 y = l o g b ( x ) y=log_b(x) y=logb(x)

证明:乘积的对数是对数的和

证明:对数将指数移至对数之前

证明换底法则

9.2 e的定义

9.2.1 有关复利的问题

银行A:利息年利率 12 % 12\% 12%一年计一次复利,意味着每一年财富增加 12 % 12\% 12%
假设今年你存入 100 100 100元,今年年底会得到 100 + 100 ∗ 0.12 = 100 ∗ ( 1 + 0.12 ) = 112 100+100*0.12=100*(1+0.12)= 112 100+1000.12=100(1+0.12)=112

银行B:利息年利率 12 % 12\% 12%一年计两次复利,每次以 12 % / 2 = 6 % 12\%/2=6\% 12%/2=6% 计算
假设今年你存入 100 100 100元,半年后得到 100 + 100 ∗ 0.06 = 100 ∗ ( 1 + 0.06 ) = 106 100+100*0.06=100*(1+0.06)=106 100+1000.06=100(1+0.06)=106
后半年的初始存款为 106 106 106,年底得到 100 ∗ ( 1 + 0.06 ) ∗ ( 1 + 0.06 ) = 100 ∗ ( 1 + 0.06 ) 2 = 112.36 100*(1+0.06)*(1+0.06)=100*(1+0.06)^2 =112.36 100(1+0.06)(1+0.06)=100(1+0.06)2=112.36

综上,一年中复利次数越多,年底财富增值越多,但会不会存在一个上限??

9.2.2 问题的答案

本金1元,年利率 r r r,一年中复利 n n n 次(每次利率为 r n \frac{r}{n} nr),年底财富增长为
( 1 + r n ) n (1+\frac{r}{n})^n (1+nr)n
本金A元,年利率 r r r,一年中复利 n n n 次(每次利率为 r n \frac{r}{n} nr), t t t 年后的财富为
A ( 1 + r n ) n t A(1+\frac{r}{n})^{nt} A(1+nr)nt

当年利率 r = 1 r=1 r=1

9.2.3 更多关于 e 和对数函数的内容


x = 1 x=1 x=1
lim ⁡ n → ∞ ( 1 + 1 n ) n = e \lim_{n\rightarrow \infty}(1+\frac{1}{n})^n=e nlim(1+n1)n=e
lim ⁡ h → ∞ ( 1 + h ) 1 h = e \lim_{h\rightarrow \infty}(1+h)^{\frac{1}{h}}=e hlim(1+h)h1=e

对数法则

9.3 对数函数和指数函数求导

指数函数和对数函数求导的例子
例1:

例2:

导数相同意味着原函数图像相同,将 y = l n ( x ) y=ln(x) y=ln(x) 图像向上移动即可得到 y = l n ( 8 x ) y=ln(8x) y=ln(8x)

例3:

9.4 求解指数函数或对数函数的极限

9.4.1 涉及 e 的定义的极限

例1:

例2:

9.4.2 指数函数在 0 附近的行为

例1:

例2:

例3:
当虚拟变量本身在分母上时,极限可能是一个伪装的导数

9.4.3 对数函数在 1 附近的行为

当虚拟变量本身在分母上时,极限可能是一个伪装的导数

9.4.4 指数函数在 ∞ \infty − ∞ -\infty 附近的行为


例子:

指数函数增长迅速:
不管 n n n 有多大
e x e^x ex 趋于无穷大的速度比 x x x 任意正次幂都要迅速

分母趋于无穷大的速度比分子趋于无穷大的速度迅速

例如:

9.4.5 对数函数在 ∞ \infty 附近的行为

不能取任何负数的对数,因此没有必要研究对数函数在 − ∞ -\infty 附近的行为

对数函数增长缓慢:
不管 a a a 有多小
l n ( x ) ln(x) ln(x) 趋于无穷大的速度比 x x x 的任意正次幂都要慢

分子趋于无穷大的速度比分母趋于无穷大的速度

例1:

例2:
t t t 替换 -x 这一技巧可将指数函数在 − ∞ -\infty 附近的行为转换为在 + ∞ +\infty + 附近的行为

e x e^x ex − ∞ -\infty 附近的行为,但通过设 t = − x t=-x t=x,我们可以将情形转换为 + ∞ +\infty +
x → − ∞ x\rightarrow-\infty x 时,有 t → + ∞ t\rightarrow+\infty t+

9.4.6 对数函数在 0 0 0 附近的行为

l n ( 0 ) ln(0) ln(0)无意义

对数函数在 0 附近向下增长缓慢:
不管 a a a 有多小

例子:
1 t \frac{1}{t} t1 替换 x 这一技巧可将对数函数在 0 附近的行为转换为在 ∞ \infty 附近的行为

9.5 取对数求导法

何种情况下使用取对数求导法

取对数求导法的过程

例子:

x a x^a xa 的导数

9.6 指数增长和指数衰变

9.6.1 指数增长

t t t 为时间(如 t = 1 t=1 t=1 代表第一年)
P 0 P_0 P0 是时间 t = 0 t=0 t=0 时的总数(如羊群)
k k k 为增长常数, k k k 越大种群繁殖越快

9.6.2 指数衰变

t t t 为时间(如 t = 1 t=1 t=1 代表第一年)
P 0 P_0 P0 是原始数量 (如: t = 0 t=0 t=0 时原子的数量)
− k -k k 是衰变常数

9.7 双曲函数(实际上是伪装的指数函数)

9.7.0 双曲函数定义


双曲角是以双曲线、通过原点直线以及其对x轴的映射三者之间所夹面积定义的(例如图中阴影部分面积 α 2 \frac{\alpha}{2} 2α

双曲函数的前缀 ar 代表 area (面积,即以上定义的面积)

双曲函数中的 x x x 其实是双曲角 α \alpha α (大小为上述定义阴影部分面积的 2 2 2 倍)
x 2 − y 2 = 1 c o s h 2 ( α ) − s i n h 2 ( α ) = 1 y = s i n h ( α ) y = c o s h ( α ) . . . x^2-y^2=1 \\ cosh^2(\alpha)-sinh^2(\alpha)=1\\ y=sinh(\alpha)\\ y=cosh(\alpha)\\ ... x2y2=1cosh2(α)sinh2(α)=1y=sinh(α)y=cosh(α)...
为了与三角函数在形式上统一,将双曲角 α \alpha α 换个名称 x x x
c o s h 2 ( x ) − s i n h 2 ( x ) = 1 y = s i n h ( x ) y = c o s h ( x ) . . . cosh^2(x)-sinh^2(x)=1\\ y=sinh(x)\\ y=cosh(x)\\ ... cosh2(x)sinh2(x)=1y=sinh(x)y=cosh(x)...

9.7.1 双曲余弦函数(Hyperbolic COSine,cosh)

9.7.2 双曲正弦函数(Hyperbolic SINe,sinh)


9.7.3 双曲正切函数(Hyperbolic TANgent,tanh)

t a n h ( x ) = s i n h ( x ) c o s h ( x ) = e x − e − x e x + e − x tanh(x)=\frac{sinh(x)}{cosh(x)}=\frac{e^x-e^{-x}}{e^x+e^{-x}} tanh(x)=cosh(x)sinh(x)=ex+exexex

9.7.4 双曲余切函数(Hyperbolic COTangent,coth)

c o t h ( x ) = 1 t a n h ( x ) = e x + e − x e x − e − x coth(x)=\frac{1}{tanh(x)}=\frac{e^x+e^{-x}}{e^x-e^{-x}} coth(x)=tanh(x)1=exexex+ex

9.7.5 双曲正割函数(Hyperbolic SECant,sech)

s e c h ( x ) = 1 c o s h ( x ) = 2 e x + e − x sech(x)=\frac{1}{cosh(x)}=\frac{2}{e^x+e^{-x}} sech(x)=cosh(x)1=ex+ex2

9.7.6 双曲余割函数(Hyperbolic CoSeCant,csch)

c s c h ( x ) = 1 s i n h ( x ) = 2 e x − e − x csch(x)=\frac{1}{sinh(x)}=\frac{2}{e^x-e^{-x}} csch(x)=sinh(x)1=exex2

9.7.7 双曲函数与三角函数的关系


三角函数

双曲函数

9.7.8 双曲函数恒等式

9.7.9 双曲函数加法公式

9.7.10 双曲函数减法公式

9.7.11 双曲函数二倍角公式

9.7.11 双曲函数三倍角公式

9.7.12 双曲函数半角公式

9.7.13 双曲函数导数关系

9.7.14 双曲函数导数关系

9.7.15 双曲函数级数表示

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Uncertainty!!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值