向量场中的曲线积分、环量、通量
1.向量场中的曲线积分、环量、通量
1.1 二维向量场中的曲线积分
以下三张图来源于:Line integrals and vector fields | Multivariable Calculus | Khan Academy
1.2 三维向量场中的曲线积分
V e c t o r F i e l d s : F ⃗ ( x , y , z ) = P ( x , y , z ) i + Q ( x , y , z ) j + R ( x , y , z ) k C u r v e C : r ⃗ ( t ) = x ( t ) i + y ( t ) j + z ( t ) k , a ≤ t ≤ b d W = F ⃗ ⋅ r ⃗ ( t ) W = ∫ C d W = ∫ C F ⃗ ⋅ r ⃗ ( t ) d r ⃗ d t = x ′ ( t ) i + y ′ ( t ) j + z ′ ( t ) k d r ⃗ = x ′ ( t ) d t i + y ′ ( t ) d t j + z ′ ( t ) d t k F ⃗ ⋅ r ⃗ ( t ) = ( P ( x , y , z ) i + Q ( x , y , z ) j + R ( x , y , z ) k ) ⋅ ( x ′ ( t ) d t i + y ′ ( t ) d t j + z ′ ( t ) d t k ) F ⃗ ⋅ r ⃗ ( t ) = P ( x , y , z ) x ′ ( t ) d t + Q ( x , y , z ) y ′ ( t ) d t + R ( x , y , z ) z ′ ( t ) d t ∫ t = a t = b F ⃗ ⋅ r ⃗ ( t ) = ∫ t = a t = b P ( x , y , z ) x ′ ( t ) d t + Q ( x , y , z ) y ′ ( t ) d t + R ( x , y , z ) z ′ ( t ) d t F ⃗ ( r ( t ) ) = P ( x ( t ) , y ( t ) , z ( t ) ) i + Q ( x ( t ) , y ( t ) , z ( t ) ) j + R ( x ( t ) , y ( t ) , z ( t ) ) k ∫ t = a t = b F ⃗ ⋅ r ⃗ ( t ) = ∫ t = a t = b F ⃗ ( r ( t ) ) d r ⃗ d t d t (其中 F ⃗ ( r ( t ) ) 表示向量场中起点在曲线上的向量) Vector Fields:\vec{F}(x,y,z)=P(x,y,z)\boldsymbol{i}+Q(x,y,z)\boldsymbol{j}+R(x,y,z)\boldsymbol{k}\\ ~\\ Curve\, C:\vec{r}(t)=x(t)\boldsymbol{i}+y(t)\boldsymbol{j}+z(t)\boldsymbol{k},a\leq t \leq b\\ ~\\ dW=\vec{F}\cdot\vec{r}(t)\\ ~\\ W=\int_CdW=\int_C\vec{F}\cdot\vec{r}(t)\\ ~\\ \frac{d\vec{r}}{dt}=x'(t)\boldsymbol{i}+y'(t)\boldsymbol{j}+z'(t)\boldsymbol{k}\\ ~\\ d\vec{r}=x'(t)dt\boldsymbol{i}+y'(t)dt\boldsymbol{j}+z'(t)dt\boldsymbol{k}\\ ~\\ \vec{F}\cdot\vec{r}(t)=(P(x,y,z)\boldsymbol{i}+Q(x,y,z)\boldsymbol{j}+R(x,y,z)\boldsymbol{k})\cdot(x'(t)dt\boldsymbol{i}+y'(t)dt\boldsymbol{j}+z'(t)dt\boldsymbol{k})\\ ~\\ \vec{F}\cdot\vec{r}(t)=P(x,y,z)x'(t)dt+Q(x,y,z)y'(t)dt+R(x,y,z)z'(t)dt\\ ~\\ \int_{t=a}^{t=b}\vec{F}\cdot\vec{r}(t)=\int_{t=a}^{t=b}P(x,y,z)x'(t)dt+Q(x,y,z)y'(t)dt+R(x,y,z)z'(t)dt\\ ~\\ \vec{F}(r(t))=P(x(t),y(t),z(t))\boldsymbol{i}+Q(x(t),y(t),z(t))\boldsymbol{j}+R(x(t),y(t),z(t))\boldsymbol{k}\\ ~\\ \int_{t=a}^{t=b}\vec{F}\cdot\vec{r}(t)=\int_{t=a}^{t=b}\vec{F}(r(t))\frac{d\vec{r}}{dt}dt(其中\vec{F}(r(t))表示向量场中起点在曲线上的向量) VectorFields:F(x,y,z)=P(x,y,z)i+Q(x,y,z)j+R(x,y,z)k CurveC:r(t)=x(t)i+y(t)j+z(t)k,a≤t≤b dW=F⋅r(t) W=∫CdW=∫CF⋅r(t) dtdr=x′(t)i+y′(t)j+z′(t)k dr=x′(t)dti+y′(t)dtj+z′(t)dtk F⋅r(t)=(P(x,y,z)i+Q(x,y,z)j+R(x,y,z)k)⋅(x′(t)dti+y′(t)dtj+z′(t)dtk) F⋅r(t)=P(x,y,z)x′(t)dt+Q(x,y,z)y′(t)dt+R(x,y,z)z′(t)dt ∫t=at=bF⋅r(t)=∫t=at=bP(x,y,z)x′(t)dt+Q(x,y,z)y′(t)dt+R(x,y,z)z′(t)dt F(r(t))=P(x(t),y(t),z(t))i+Q(x(t),y(t),z(t))j+R(x(t),y(t),z(t))k ∫t=at=bF⋅r(t)=∫t=at=bF(r(t))dtdrdt(其中F(r(t))表示向量场中起点在曲线上的向量)
例子:
1.3 简单闭合曲线上的环量
环量的定义
环量(circulation)是流体的速度沿着一条闭曲线的路径积分
例子:
1.4 简单闭合曲线上的通量
Simple:曲线没有穿过自身
closed:起点与终点重合
通量的定义
在流体运动中,单位时间内流经某单位面积的某属性量,是表示某属性量输送强度的物理量
例子:
1.5 计算向量场的散度和通量