向量场中的曲线积分、环量、通量

1.向量场中的曲线积分、环量、通量

1.1 二维向量场中的曲线积分

以下三张图来源于:Line integrals and vector fields | Multivariable Calculus | Khan Academy



1.2 三维向量场中的曲线积分

V e c t o r F i e l d s : F ⃗ ( x , y , z ) = P ( x , y , z ) i + Q ( x , y , z ) j + R ( x , y , z ) k   C u r v e   C : r ⃗ ( t ) = x ( t ) i + y ( t ) j + z ( t ) k , a ≤ t ≤ b   d W = F ⃗ ⋅ r ⃗ ( t )   W = ∫ C d W = ∫ C F ⃗ ⋅ r ⃗ ( t )   d r ⃗ d t = x ′ ( t ) i + y ′ ( t ) j + z ′ ( t ) k   d r ⃗ = x ′ ( t ) d t i + y ′ ( t ) d t j + z ′ ( t ) d t k   F ⃗ ⋅ r ⃗ ( t ) = ( P ( x , y , z ) i + Q ( x , y , z ) j + R ( x , y , z ) k ) ⋅ ( x ′ ( t ) d t i + y ′ ( t ) d t j + z ′ ( t ) d t k )   F ⃗ ⋅ r ⃗ ( t ) = P ( x , y , z ) x ′ ( t ) d t + Q ( x , y , z ) y ′ ( t ) d t + R ( x , y , z ) z ′ ( t ) d t   ∫ t = a t = b F ⃗ ⋅ r ⃗ ( t ) = ∫ t = a t = b P ( x , y , z ) x ′ ( t ) d t + Q ( x , y , z ) y ′ ( t ) d t + R ( x , y , z ) z ′ ( t ) d t   F ⃗ ( r ( t ) ) = P ( x ( t ) , y ( t ) , z ( t ) ) i + Q ( x ( t ) , y ( t ) , z ( t ) ) j + R ( x ( t ) , y ( t ) , z ( t ) ) k   ∫ t = a t = b F ⃗ ⋅ r ⃗ ( t ) = ∫ t = a t = b F ⃗ ( r ( t ) ) d r ⃗ d t d t (其中 F ⃗ ( r ( t ) ) 表示向量场中起点在曲线上的向量) Vector Fields:\vec{F}(x,y,z)=P(x,y,z)\boldsymbol{i}+Q(x,y,z)\boldsymbol{j}+R(x,y,z)\boldsymbol{k}\\ ~\\ Curve\, C:\vec{r}(t)=x(t)\boldsymbol{i}+y(t)\boldsymbol{j}+z(t)\boldsymbol{k},a\leq t \leq b\\ ~\\ dW=\vec{F}\cdot\vec{r}(t)\\ ~\\ W=\int_CdW=\int_C\vec{F}\cdot\vec{r}(t)\\ ~\\ \frac{d\vec{r}}{dt}=x'(t)\boldsymbol{i}+y'(t)\boldsymbol{j}+z'(t)\boldsymbol{k}\\ ~\\ d\vec{r}=x'(t)dt\boldsymbol{i}+y'(t)dt\boldsymbol{j}+z'(t)dt\boldsymbol{k}\\ ~\\ \vec{F}\cdot\vec{r}(t)=(P(x,y,z)\boldsymbol{i}+Q(x,y,z)\boldsymbol{j}+R(x,y,z)\boldsymbol{k})\cdot(x'(t)dt\boldsymbol{i}+y'(t)dt\boldsymbol{j}+z'(t)dt\boldsymbol{k})\\ ~\\ \vec{F}\cdot\vec{r}(t)=P(x,y,z)x'(t)dt+Q(x,y,z)y'(t)dt+R(x,y,z)z'(t)dt\\ ~\\ \int_{t=a}^{t=b}\vec{F}\cdot\vec{r}(t)=\int_{t=a}^{t=b}P(x,y,z)x'(t)dt+Q(x,y,z)y'(t)dt+R(x,y,z)z'(t)dt\\ ~\\ \vec{F}(r(t))=P(x(t),y(t),z(t))\boldsymbol{i}+Q(x(t),y(t),z(t))\boldsymbol{j}+R(x(t),y(t),z(t))\boldsymbol{k}\\ ~\\ \int_{t=a}^{t=b}\vec{F}\cdot\vec{r}(t)=\int_{t=a}^{t=b}\vec{F}(r(t))\frac{d\vec{r}}{dt}dt(其中\vec{F}(r(t))表示向量场中起点在曲线上的向量) VectorFieldsF (x,y,z)=P(x,y,z)i+Q(x,y,z)j+R(x,y,z)k CurveCr (t)=x(t)i+y(t)j+z(t)katb dW=F r (t) W=CdW=CF r (t) dtdr =x(t)i+y(t)j+z(t)k dr =x(t)dti+y(t)dtj+z(t)dtk F r (t)=(P(x,y,z)i+Q(x,y,z)j+R(x,y,z)k)(x(t)dti+y(t)dtj+z(t)dtk) F r (t)=P(x,y,z)x(t)dt+Q(x,y,z)y(t)dt+R(x,y,z)z(t)dt t=at=bF r (t)=t=at=bP(x,y,z)x(t)dt+Q(x,y,z)y(t)dt+R(x,y,z)z(t)dt F (r(t))=P(x(t),y(t),z(t))i+Q(x(t),y(t),z(t))j+R(x(t),y(t),z(t))k t=at=bF r (t)=t=at=bF (r(t))dtdr dt(其中F (r(t))表示向量场中起点在曲线上的向量)

例子:


1.3 简单闭合曲线上的环量

环量的定义
环量(circulation)是流体的速度沿着一条闭曲线的路径积分



例子:

1.4 简单闭合曲线上的通量

Simple:曲线没有穿过自身
closed:起点与终点重合

通量的定义
在流体运动中,单位时间内流经某单位面积的某属性量,是表示某属性量输送强度的物理量




例子:

1.5 计算向量场的散度和通量


1.6 计算向量场的旋度和环量

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Uncertainty!!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值