格林公式(Green‘s Formula)

35.格林公式

当向量场F不是保守场时,计算平面上闭合曲线C上的功或通量积分

35.1 环量-旋度/正切形式的证明

环量(circulation)是流体的速度沿着一条闭曲线的路径积分

35.1.1 方法一

35.1.2 方法二

笔记来源于:Green’s theorem proof | Multivariable Calculus | Khan Academy

向量函数 P ⃗ ( x , y ) = P ( x , y ) i \vec{P}(x,y)=P(x,y)\boldsymbol{i} P (x,y)=P(x,y)i

向量函数 Q ⃗ ( x , y ) = Q ( x , y ) j \vec{Q}(x,y)=Q(x,y)\boldsymbol{j} Q (x,y)=Q(x,y)j



向量函数 F ⃗ ( x , y ) = P ( x , y ) i + Q ( x , y ) j \vec{F}(x,y)=P(x,y)\boldsymbol{i}+Q(x,y)\boldsymbol{j} F (x,y)=P(x,y)i+Q(x,y)j


例子:

35.2 通量-散度或正交形式的证明

在流体运动中,单位时间内流经某单位面积的某属性量,是表示某属性量输送强度的物理量

35.2.1 方法一


例子:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Uncertainty!!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值