标准正交基(Orthonormal)、施密特正交化(Gram-Schmidt)

1.标准正交基(Orthonormal)与施密特正交化(Gram-Schmidt)

1.1 标准正交基(Orthonormal)

标准正交基是长度均1的基向量,在子空间中所有标准正交基均互相垂直,即它们的点积为0


正交矩阵的一个性质:


如果正交矩阵还是一个方阵,则


正交矩阵的性质


正交矩阵的例子:

(1)旋转矩阵(Rotation Matrix)


(2)置换矩阵(Permutation Matrix)



(3)反射矩阵(Reflection Matrix)
注意: u T u \boldsymbol{u}^T\boldsymbol{u} uTu是一个数 、 u u T \boldsymbol{u}\boldsymbol{u}^T uuT是一个矩阵

u T ⋅ u = [ u 1 u 2 ⋯ u n ] ⋅ [ u 1 u 2 ⋮ u n ] = u 1 2 + u 2 2 + ⋅ + u n 2 \boldsymbol{u}^T\cdot\boldsymbol{u}=\begin{bmatrix}u_1\quad u_2\quad \cdots\quad u_n\end{bmatrix}\cdot \begin{bmatrix}u_1\\ u_2\\ \vdots \\ u_n\end{bmatrix}=u_1^2+u_2^2+\cdot+u_n^2 uTu=[u1u2un]u1u2un=u12+u22++un2

u ⋅ u T = [ u 1 u 2 ⋮ u n ] ⋅ [ u 1 u 2 ⋯ u n ] = [ u 1 u 1 u 1 u 2 ⋯ u 1 u n u 2 u 1 u 2 u 2 ⋯ u 2 u n ⋮ ⋮ ⋱ ⋮ u n u 1 u n u 2 ⋯ u n u n ] \boldsymbol{u}\cdot\boldsymbol{u}^T=\begin{bmatrix}u_1\\ u_2\\ \vdots \\ u_n\end{bmatrix}\cdot \begin{bmatrix}u_1\quad u_2\quad \cdots\quad u_n\end{bmatrix}=\begin{bmatrix}u_1u_1 & u_1u_2 & \cdots & u_1u_n\\ u_2u_1 & u_2u_2&\cdots&u_2u_n\\ \vdots & \vdots & \ddots & \vdots \\ u_nu_1&u_nu_2&\cdots& u_nu_n\end{bmatrix} uuT=u1u2un[u1u2un]=u1u1u2u1unu1u1u2u2u2unu2u1unu2ununun

1.2 施密特正交化(Gram-Schmidt)

Gram-Schmidt 的思路:从每一个新向量中减去它在其他已存在的每个向量的方向上的投影

三个线性无关向量 a ⃗ 、 b ⃗ 、 c ⃗ \vec{a}、\vec{b}、\vec{c} a b c
三个正交向量 A 、 B 、 C \boldsymbol{A}、\boldsymbol{B}、\boldsymbol{C} ABC
三个标准正交向量 q 1 = A ∣ ∣ A ∣ ∣ 、 q 2 = B ∣ ∣ B ∣ ∣ 、 q 3 = C ∣ ∣ C ∣ ∣ \boldsymbol{q_1}=\frac{\boldsymbol{A}}{||\boldsymbol{A}||}、\boldsymbol{q_2}=\frac{\boldsymbol{B}}{||\boldsymbol{B}||}、\boldsymbol{q_3}=\frac{\boldsymbol{C}}{||\boldsymbol{C}||} q1=AAq2=BBq3=CC

先对投影矩阵 P P P 进行回顾:

施密特正交化第一步:向量 b ⃗ \vec{b} b 与其在向量 a ⃗ \vec{a} a 上的投影作差得到与向量 a ⃗ \vec{a} a 正交的向量 B \boldsymbol{B} B,然后我们将向量 a ⃗ \vec{a} a 称作 A \boldsymbol{A} A(注意这里 A \boldsymbol{A} A B \boldsymbol{B} B是向量,与未正交化的向量进行区别)


上图中 p ⃗ \vec{p} p 是向量 b ⃗ \vec{b} b 在 向量 a ⃗ \vec{a} a 上的投影向量

A T b ⃗ A T A A \frac{A^T\vec{b}}{A^TA}A ATAATb A 是向量 b ⃗ \vec{b} b 在向量 A \boldsymbol{A} A上的投影向量

下图中 p ⃗ \vec{p} p 是向量 c ⃗ \vec{c} c 在正交向量 A 、 B \boldsymbol{A}、\boldsymbol{B} AB 构成平面上的投影向量

A T c ⃗ A T A A \frac{A^T\vec{c}}{A^TA}A ATAATc A 是向量 c ⃗ \vec{c} c 在向量 A \boldsymbol{A} A上的投影向量

B T c ⃗ B T B B \frac{B^T\vec{c}}{B^TB}B BTBBTc B 是向量 c ⃗ \vec{c} c 在向量 B \boldsymbol{B} B上的投影向量


将正交向量单位化

例子:

  • 6
    点赞
  • 26
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Uncertainty!!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值