频谱特征参数的离散小波分析

本文通过离散小波分析分解语音信号的频谱特征,利用GMM模型转换小波低频系数,高频系数保持不变,以减少合成语音的失真。对比实验表明,coif小波在频谱失真控制上优于haar和db小波,因此选用coif小波进行处理。
摘要由CSDN通过智能技术生成

小波分析的一个很重要的特征是具有多分辨率分析,能够在时域、频域表征信号的局部特征。本文采用离散小波分析对语音信号的频谱特征进行分解,分为小波低频系数和小波高频系数,其中,前者可以表征频谱的包络情况,后者则描述频谱的细节成分。然后利用 GMM 模型对小波的低频系数进行转换。在转换阶段,对待转换的语音频谱特征进行多分辨率小波分析,利用训练好的模型对小波低频系数进行转换,而小波的高频系数则保留不变,直接与转换的低频系数相结合用于语音的合成,因为文献(TURK O, ARSLAN L M. Subband based voice conversion[C]. International Conference on Spoken  Language Processing(ICSLP))已经证实:对高频系数的转换对于改 善合成语音的质量所起的作用是微不足道的,但是却增加了频谱失真,其原因在于只有少量 的语音信号分量存在于高频部分。这样做,可以很好的改善单独采用 GMM 模型进行语音转 换所引起的过平滑现象。与文献(TURK O, ARSLAN L M. Subband based voice conversion[C]. International Conference on Spoken  Language Processing(ICSLP))相比,不同点是:我们是对频谱特征参数 LSF 进行离散小波分析,而非语音信号。

根据 DWT 的理论(STRANG G, NGUYEN T. Wavelets and filter banks[M]. 2nd edition. Wellesley, USA: Wellesley-Cambridge Press)可知,Vj(Vj=Vj-1⊕ Wj-1)空间的信号 x(t)可以表示成子空间 Vj-1 和正交 补子空间 Wj-1 的基函数:

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值