流体网络拓扑(2)——流体网络图的矩阵表示

图论基础:邻接矩阵、关联矩阵与回路矩阵解析
本文详细介绍了图论中的重要概念,包括无向图和有向图的邻接矩阵表示,强调了矩阵中负号的含义。接着探讨了关联矩阵,区分了无向图和有向图的差异。进一步,文章阐述了回路矩阵及其在描述有向图拓扑结构中的作用,特别是如何通过支撑树构建基本回路矩阵。

2 节点邻接矩阵

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.1无向图

在这里插入图片描述

2.2有向图

在这里插入图片描述
有向图节点邻接矩阵A中元素的“负号”是指始节点vi到终节点vj的流向与图1-1中所约定的流向相反,因此以“负号”来表示。

3关联矩阵与基本关联矩阵

3.1关联矩阵

在这里插入图片描述

3.1.1无向图

在这里插入图片描述

3.1.2有向图

在这里插入图片描述
在这里插入图片描述

3.2基本关联矩阵

在这里插入图片描述
在这里插入图片描述

4回路矩阵与基本回路矩阵

4.1回路矩阵

回路是由支路所构成的一条闭合路径。回路矩阵是用回路与支路的关系描述有向图的拓扑性质。

4.1.1无向图

在这里插入图片描述

4.1.2有向图

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

4.2基本回路矩阵

将满秩的回路矩阵称为基本回路矩阵,有时也简称回路矩阵,并也用C表示,在无特别说明的情况下本书所提的回路矩阵均指基本回路矩阵。构造基本回路的方法通常是先找出图G中的一棵支撑树T,支撑树之外的分支为余支,支撑树每增加一条余支即可构成一个基本回路,并定义在有向图中基本回路的方向与余支方向相同。这种通过加余支形成基本回路的方法,可保证所选择的n-m+1个回路都是满秩的(m是节点个数,n是边的条数)。
在这里插入图片描述
在这里插入图片描述

您好!对于基于一维流动的不可压流体网络的 MATLAB 程序,您可以参考以下步骤来实现: 1. 定义网络拓扑结构:首先,您需要定义流体网络的拓扑结构。可以使用节点和管道的方式来表示,其中节点表示交汇点或者末端点,管道表示连接节点的流动路径。您可以使用矩阵或者其他数据结构来表示网络拓扑2. 定义节点和管道的属性:为每个节点和管道定义相应的属性,如压力、流量等。这些属性将是求解一维流动方程所需的参数。 3. 构建一维流动方程:根据不可压流体的连续性方程和动量方程,构建一维流动方程。使用有限差分法或者其他数值方法离散化方程,将其转化为代数方程组。 4. 求解代数方程组:使用 MATLAB 的线性代数求解函数(如 linsolve)求解离散化后的代数方程组。根据网络拓扑结构,将节点和管道之间的关系建立矩阵形式,并求解出节点和管道的属性。 5. 可选:添加边界条件和约束条件:根据具体问题的需要,您可以添加边界条件和约束条件,如固定压力或流量。 6. 可选:可视化结果:使用 MATLAB 的绘图函数,可以将求解得到的节点和管道属性进行可视化展示,以便更直观地观察流体网络的行为。 请注意,以上只是一个大致的步骤,具体实现细节会根据您的问题和需求有所不同。希望这些步骤能对您有所帮助!
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值