TensorFlow ResNet18

一、模型

可调整的预处理层卷积核大小 

1.主模型 

from keras import layers, Sequential, Model
from keras.layers import Conv2D, BatchNormalization, ReLU,MaxPool2D,Layer,GlobalAvgPool2D,Dense,Input


class ResNet18(Model):
    def __init__(self, class_num,in_shape, pre_filter_size=7):
        """
        :param in_shape: the shape of each example
        :param class_num: the number of classes
        :param pre_filter_size: the size of filters in the preprocessing layer
        """
        super().__init__()
        # preprocessing layer
        self.pl = Sequential([
            Conv2D(64,(pre_filter_size,pre_filter_size),strides=2,padding='same'),
            BatchNormalization(),
            ReLU(),
            MaxPool2D(pool_size=(3,3),strides=2,padding='same')
        ])

        self.input_layer = Input(in_shape)  # used to reveal output shape

        # Residual Blocks
        self.block1 =
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

VAMOT

您的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值