PyTorch语义分割系列——FCN

一、核心思想

1、使用卷积层替换全连接层中的所有线性层

2、 FCN可分为底模/骨架(backbone)与头部(head)两个部分

  • 底模用于提取特征,可以使用VGG16、AlexNet、ResNet等提取特征的部分
  • 头部用于预测像素点的类别;因底模中存在下采样操作(如池化和步长为2的卷积层),头部需将图像上采样至原本大小 

 该图省略了卷积层,激活层等。Kx表示输出尺寸(HW)是输入尺寸(HW)的K倍。

 3、FCNHead 

  • 头部包括全卷积层、跳跃结构与上采样(至原始尺寸)。
  • 通常使用卷积核大小为1、步长为1无填充的卷积层预测,全卷积层的最后一层为该卷积层。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

VAMOT

您的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值