一、核心思想
1、使用卷积层替换全连接层中的所有线性层
2、 FCN可分为底模/骨架(backbone)与头部(head)两个部分
- 底模用于提取特征,可以使用VGG16、AlexNet、ResNet等提取特征的部分
- 头部用于预测像素点的类别;因底模中存在下采样操作(如池化和步长为2的卷积层),头部需将图像上采样至原本大小
该图省略了卷积层,激活层等。Kx表示输出尺寸(H,W)是输入尺寸(H,W)的K倍。
3、FCNHead
- 头部包括全卷积层、跳跃结构与上采样(至原始尺寸)。
- 通常使用卷积核大小为1、步长为1无填充的卷积层预测,全卷积层的最后一层为该卷积层。