deeplearning.8logistic梯度下降法

梯度下降法

梯度下降法

梯度下降法如何训练logistic回归中出现的w和b参数呢,首先回归下logistic回归算法。第二行是成本函数J,被定义为平均值,即1/m的损失函数之和。
在这里插入图片描述
我们想找到使J最小成立的参数w,b。下图中横轴是w和b,纵轴是J的值。在实践中w可以是更高维的。可以看到,J是一个凸函数。梯度下降就是从初始化值J(w0,b0)开始,朝最陡的下坡方向走一步。最后一步一步收敛到全局最优解,或者接近全局最优解。
在这里插入图片描述
为了方便表示,忽略b值,只使用w和纵轴进行二维曲线画图。进行如下步骤,w一次一次按照下式更新,α是学习率,控制每一次迭代,或者梯度下降法中的步长。dw是导数,对参数w的更新或者变化量。新的w值就结合下面二维图和公式来计算。最后朝着J(w)的最小值进发。同样的更新参数b,也可以用类似的式子。
在这里插入图片描述

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值